Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T20:27:51.290Z Has data issue: false hasContentIssue false

Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas

Published online by Cambridge University Press:  09 July 2018

J. L. Bishop*
Affiliation:
SETI Institute/NASA-Ames Research Center, 515 N. Whisman Road, Mountain View, CA 94043, USA
M. D. Lane
Affiliation:
Planetary Science Institute, 1700 E. Fort Lowell, Suite 106, Tucson, AZ 85719, USA
M. D. Dyar
Affiliation:
Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
A. J. Brown
Affiliation:
SETI Institute/NASA-Ames Research Center, 515 N. Whisman Road, Mountain View, CA 94043, USA

Abstract

Coordinated visible/near-infrared reflectance/mid-infrared reflectance and emissivity spectra of four groups of phyllosilicates were undertaken to provide insights into the differences within and among groups of smectites, kaolinite-serpentines, chlorites and micas. Identification and characterization of phyllosilicates via remote sensing on Earth and Mars can be achieved using the OH combination bands in the 2.2–2.5 μm region and the tetrahedral SiO4 vibrations from ~8.8–12 μm (~1140–830 cm–1) and ~20–25 μm (500–400 cm–1). The sharp and well resolved OH combination bands in the 2.2–2.5 μm region provide unique fingerprints for specific minerals. Al-rich phyllosilicates exhibit OH combination bands near 2.2 μm, while these bands are observed near 2.29–2.31, 2.33–2.34 μm and near 2.35–2.37 μm for Fe3+-rich, Mg-rich and Fe2+-rich phyllosilicates, respectively. When a tetrahedral substitution of Al or Fe3+ for Si occurs, the position of the Si(Al,Fe)O4 stretching mode absorption shifts. Depending on the size of the cation, the Si(Al,Fe)O4 bending mode near 500 cm–1 is split into multiple bands that may be distinguished via hyperspectral remote sensing techniques. The tetrahedral SiO4 vibrations are also influenced by the octahedral cations, such that Al-rich, Fe-rich and Mg-rich phyllosilicates can be discriminated in reflectance and emissivity spectra based on diagnostic positions of the stretching and bending bands. Differences among formation conditions for these four groups of phyllosilicates are also discussed. Hyperspectral remote sensing can be used to identify specific phyllosilicates using electronic and vibrational features and thus provide constraints on the chemistry and formation conditions of soils.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1980) Structures of layer silicates. Pp. 1124 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogical Society, London.Google Scholar
Bell, J.F. III, Joseph, J., Sohl-Dickstein, J.N., Arneson, H.M., Johnson, M.J., Lemmon, M.T. & Savransky, D. (2006) In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments. Journal of Geophysical Research, 111, E02S03, DOI:10.1029/2005JE002444.Google Scholar
Beran, A. (2002) Infrared spectroscopy of Micas. Pp. 351369 in: Micas: Crystal Chemistry and Metamorphic Petrology (Mottana, A., Sassi, F.P., Thompson, J.B. & Guggenheim, S., editors). Mineralogical Society of America, Washington D.C.CrossRefGoogle Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., Gondet, B., Poulet, F., Berthé, M., Soufflot, A., Arvidson, R., Mangold, N., Mustard, J. & Drossart, P. (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science, 307, 15761581.Google Scholar
Bibring, J.-P., Langevin, Y., Mustard, J.F., Poulet, F., Arvidson R, Gendrin, A., Gondet, B., Mangold, N., Pinet, P. & Forget, F. (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science, 312, 400404.CrossRefGoogle ScholarPubMed
Bishop, J.L., Pieters, C.M. & Edwards, J.O. (1994) Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays and Clay Minerals, 42, 701715.Google Scholar
Bishop, J.L., Murad, E., Madejová, J., Komadel, P., Wagner, U. & Scheinost, A. (1999) Visible, Mössbauer and infrared spectroscopy of dioctahedral smectites: Structural analyses of the Fe-bearing smectites Sampor, SWy-1 and SWa-1. 11th International Clay Conference, June, 1997, 413-419.Google Scholar
Bishop, J.L., Murad, E. & Dyar, M.D. (2002a) The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy. Clay Minerals, 37, 617628.CrossRefGoogle Scholar
Bishop, J.L., Madejová, J., Komadel, P. & Froeschl, H. (2002b) The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of dioctahedral smectites. Clay Minerals, 37, 607616.Google Scholar
Bowen, L.H., De Grave, E., Reid, D.A., Graham, R.C. & Edinger, S.B. (1989) Mössbauer study of a California desert celadonite and its pedogenically-related smectite. Physics and Chemistry of Minerals, 16, 697703.CrossRefGoogle Scholar
Breen, C., Madejová, J. & Komadel, P. (1995) Characterisation of moderately acid-treated, size-fractionated montmorillonites using IR and MAS NMR spectroscopy and thermal analysis. Journal of Material Chemistry, 5, 469474.Google Scholar
Brown, A.J. & Storrie-Lombardi, M. (2006) MR PRISM — A spectral tool for the CRISM. In: Instruments, Methods and Missions for Astrobiology IX. Proceedings of SPIE Optics Photonics, Volume 6309, DOI:10.1117/12.677107.Google Scholar
Burns, R.G. (1993) Mineralogical Applications of Crystal Field Theory. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, New York.Google Scholar
Chipera, S.J. & Bish, D.L. (2001) Baseline studies of The Clay Minerals Society Source Clays: powder X-ray diffraction analyses. Clays and Clay Minerals, 49, 398409.CrossRefGoogle Scholar
Christensen, P.R., Bandfield, J.L., Hamilton, V.E., Ruff, S.W., Kieffer, H.H., Titus, T.N., Malin, M.C., Morris, R.V., Lane, M.D., Clark, R.L., Jakosky, B.M., Mellon, M.T., Pearl, J.C., Conrath, B.J., Smith, M.D., Clancy, R.T., Kuzmin, R.O., Roush, T., Mehall, G.L., Gorelick, N., Bender, K., Murray, K., Dason, S., Greene, E., Silverman, S. & Greenfield, M. (2001) Mars Global Surveyor thermal emission spectrometer experiment: investigation, description and surface science results. Journal of Geophysical Research, 106, 2382323871.Google Scholar
Číčel, B. & Komadel, P. (1994) Structural formulae of layer silicates. Pp. 114136 in: Quantitative Methods in Soil Mineralogy (Amonette, J.E. & Zelazny, L.W., editors). Soil Science Society of America.Google Scholar
Clark, R.N., King, T.V.V., Klejwa, M. & Swayze, G.A. (1990) High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95, 1265312680.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (1992) An Introduction to the Rock-Forming Minerals. Longman, London.Google Scholar
Dyar, M.D. (2002) Mössbauer and optical spectroscopy of iron in micas. Pp. 313349 in: Advances in Micas. Reviews in Mineralogy and Geochemistry (Mottana, A. & Sassi, F., editors). Mineralogical Society of America and The Geochemical Society.Google Scholar
Dyar, M.D., Gunter, M.E. & Tasa, D. (2007) Mineralogy and Optical Mineralogy. Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Dyar, M.D., Sklute, E.C., Schaefer, M.W. & Bishop, J.L. (2008) Mössbauer spectroscopy of phyllosilicates: effects of fitting models on recoil-free fractions and redox ratios. Clay Minerals, 43, 333.Google Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331363 in: The Infrared Spectra of Minerals (Farmer, V.C., editors). Monograph 4, Mineralogical Society, London.CrossRefGoogle Scholar
Farmer, V.C. (1998) Differing effects of particle size and shape in the infrared and Raman spectra of kaolinite. Clay Minerals, 33, 601604.CrossRefGoogle Scholar
Farmer, V.C. & Palmieri, F. (1975) The characterization of soil minerals by infrared spectroscopy. Pp. 573670 in: Soil Components, Volume 2, Inorganic Components (Gieseking, J.E., editor). Springer-Verlag, New York.Google Scholar
Gates, W.P. (2005) Infrared spectroscopy and the chemistry of dioctahedral smectites. Pp. 125168 in: The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides (Kloprogge, J.T., editors). The Clay Minerals Society, Aurora, Colorado, USA.Google Scholar
Govindaraju, K. (1979) Report (1968-1978) on two mica reference samples: biotite mica-Fe and phlogopite mica-Mg. Geostandards Newsletter, 3, 324.Google Scholar
Govindaraju, K., Rubeska, I. & Paukert, T. (1994) 1994 report on zinnwaldite ZW-C analysed by ninety-two GIT-IWG member-laboratories. Geostandards Newsletter, 18, 142.Google Scholar
Hayashi, H. & Oinuma, K. (1965) Relationship between infrared absorption spectra in the region of 450-900 cm∼ and chemical composition of chlorite. American Mineralogist, 50, 476483.Google Scholar
Hayashi, H. & Oinuma, K. (1967) Si—O absorption band near 1000 cm-1 and OH absorption bands of chlorite. American Mineralogist, 52, 12061210.Google Scholar
Hemingway, B.S., Kittrick, J.A., Grew, E.S., Nelen, J.A. & London, D. (1984) The heat capacities of osumilite from 298.15 to 1000 K, the thermodynamic properties of two natural chlorites to 500 K, and the thermodynamic properties of petalite to 1800 . American Mineralogist, 69, 701710.Google Scholar
Jackson, M.L. (1959) Frequency distribution of clay minerals in major soil groups as related to factors of soil formation. Clays and Clay Minerals, 6, 133143.Google Scholar
Kng, T.V.V. & Clark, R.N. (1989) Spectral character istics of chlorites and Mg-serpentines using highresolution reflectance spectroscopy. Journal of Geophysical Research, 94, 1399714008.Google Scholar
Kornfeld, J.A. (1956) Statistical relationships of minor constituents of some nontronites. Clays and Clay Minerals, 5, 174188.CrossRefGoogle Scholar
Lyon, R.J.P. & Tuddenham, W.M. (1960) Determination of tetrahedral aluminum in mica by infrared absorption analysis. Nature, 185, 374375.CrossRefGoogle Scholar
Madejová, J. & Komadel, P. (2001) Baseline studies of The Clay Minerals Society source clays: infrared methods. Clays and Clay Minerals, 49, 410432.Google Scholar
Madejová, J., Komadel, P. & Cíčel, B. (1994) Infrared study of octahedral site populations in smectites. Clay Minerals, 29, 319326.Google Scholar
Mendelovici, E., Yariv, S. & Villalba, R. (1979) Ironbearing kaolinite in Venezuelan laterites. 1. Infared spectroscopy and chemical dissolution evidence. Clay Minerals, 14, 323331.CrossRefGoogle Scholar
Mermut, A.R. & Cano, A.F. (2001) Baseline studies of The Clay Minerals Society Source Clays: chemical analyses of major elements. Clays and Clay Minerals, 49, 381386.Google Scholar
Michalski, J.R., Kraft, M.D., Sharp, T.G., Williams, L.B. & Christensen, P.R. (2005) Mineralogical constraints on the high-silica Martian surface component observed by TES. Icarus, 174, 161177.Google Scholar
Michalski, J.R., Kraft, M.D., Sharp, T.G., Williams, L.B. & Christensen, P.R. (2006) Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from Thermal Emission Spectrometer data. Journal of Geophysical Research, 111, E03004, DOI:10.1029/2005JE002438.Google Scholar
Milliken, R.E. & Mustard, J.F. (2007) Estimating the water content of hydrated minerals using reflectance spectroscopy I. Effects of darkening agents and lowalbedo materials. Icarus, 189, 550573.CrossRefGoogle Scholar
Moll, W.F.J. (2001) Baseline studies of The Clay Minerals Society Source Clays: geologic origin. Clays and Clay Minerals, 49, 374380.CrossRefGoogle Scholar
Murchie, S., Arvidson, R.E., Bedini, P., Beisser, K., Bibring, J.-P., Bishop, J.L., Boldt, J., Cavender, P., Choo, T., Clancy, R.T., Darlington, E.H., Des Marais, D., Espiritu, R., Fasold, M., Fort, D., Green, R., Guinness, E., Hayes, J., Hash, C., Heffernan, K., Hemmler, J., Heyler, G., Humm, D., Hutcheson, J., Izenberg, N., Lee, R., Lees, J., Lohr, D., Malaret, E., Martin, T.Z., McGovern, J.A., Morris, R.V., Mustard, J.F., Pelkey, S., Rhodes, E., Robinson, M., Roush, T., Schaefer, E., Seagrave, G., Seelos, F., Silvergate, P., Slavney, S., Smith, M., Strohbehn, K., Taylor H, Thompson, P., Tossman, B. & Wolff, M.J. (2007) CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) on MRO (Mars Reconnaissance Orbiter). Journal of Geophysical Research, 112, E05S03, DOI:10.1029/2006JE002682.CrossRefGoogle Scholar
Mustard, J.F., Murchie, S.L., Pelkey, S.M., Ehlmann, B.L., Milliken, R.E., Grant, J.A., Bibring, J.-P., Poulet, F., Bishop, J.L., Roach, L.A., Seelos, F., Humm, D. & Team, A.T.C.S. (2007) Overview of the hydrated silicate minerals observed on Mars by CRISM. 7th International Mars Conference, Abstract #3240.Google Scholar
Nagy, K.L. (1995) Dissolution and precipitation kinetics of sheet silicates. Pp. 173233 in: Chemical Weathering Rates of Silicate Minerals (White, A.F. & Brantley, S.L., editors). Mineralogical Society of America, Washington D.C. Google Scholar
Novak, I. & Cíčel, B. (1978) Dissolution of smectites in hydrochloric acid: II. Dissolution rate as a function of crystallochemical composition. Clays and Clay Minerals, 26, 341344.Google Scholar
O’Hanley, D.S. & Dyar, M.D. (1993) The composition of lizardite 1T and the formation of magnetite in serpentines. American Mineralogist, 78, 391404.Google Scholar
O’Hanley, D.S. & Dyar, M.D. (1998) The composition of chrysotile and its relationship with lizardite. The Canadian Mineralogist, 36, 727739.Google Scholar
Petit, S., Madejová, J., Decarreau, A. & Martin, F. (1999) Characterization of octahedral substitutions in kaolinites using near-infrared spectroscopy. Clays and Clay Minerals, 47, 103108.Google Scholar
Post, J.L. & Noble, P.N. (1993) The near-infrared combination band frequencies of dioctahedral smectites, micas, and illites. Clays and Clay Minerals, 41, 639644.CrossRefGoogle Scholar
Poulet, F., Bibring, J.-P., Mustard, J.F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B. & Gomez, C. (2005) Phyllosilicates on Mars and implications for the early Mars history. Nature, 438, 623627.CrossRefGoogle Scholar
Pruett, R.J. & Webb, H.L. (1993) Sampling and analysis of KGa-1B well-crystallized kaolin source clay. Clays and Clay Minerals, 41, 514519.CrossRefGoogle Scholar
Reid, D.A., Graham, R.C., Edinger, S.B., Bowen, L.H. & Ervin, J.O. (1988) Celadonite and its transformation to smectite in an entisol at Red Rock Canyon, Kern County, California. Clays and Clay Minerals, 36, 425431.CrossRefGoogle Scholar
Salisbury, J.W. (1993) Mid-infrared spectroscopy: laboratory data. Pp. 7998 in: Remote Geochemical Analysis: Elemental and Mineralogical Composition (Pieters, C.M. & Englert, P.A.J., editors). Cambridge University Press, Cambridge, UK.Google Scholar
Salisbury, J.W., Walter, L.S., Vergo, N. & D’Aria, D.M. (1991) Infrared (2.1-25mm) Spectra of Minerals. Johns Hopkins University Press, Baltimore, USA.Google Scholar
Salisbury, F.B., Wald, A. & D’Aria, D.M. (1994) Thermal-infrared remote sensing and Kirchhoff s law 1. Laboratory measurements. Journal of Geophysical Research, 99, 1189711911.CrossRefGoogle Scholar
Smith, A.E. (2005) New Hampshire mineral locality index. Rocks and Minerals, 80, 242261.Google Scholar
Stubican, V. & Roy, R. (1961) A new approach to the assignment of infrared absorption bands in layer silicates. Zeitschrift fur Kristallographie, 115, 200214.Google Scholar
Velde, B. (1985) Clay Minerals: A Physico-chemical Explanation of their Occurrence. Elsevier, New York.Google Scholar