Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T13:03:01.291Z Has data issue: false hasContentIssue false

Surface Properties of Alumino-Silicates

Published online by Cambridge University Press:  01 January 2024

J. J. Fripiat*
Affiliation:
The University of Louvain, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As an approach to reviewing the surface properties of alumino-silicates, this paper considers the relationships between constitution hydroxyls, surface hydroxyls, chemisorbed and physically adsorbed water molecules and exchangeable cations. One of the main characteristics of clay minerals is, indeed, the development of hydrated high surface area, electrically charged. For this purpose the surface topography, the origin of the electrical charge, and the properties of water molecules held by Van der Waals, or stronger forces are successively studied. Chemisorbed water molecules appear to have a higher than usual degree of dissociation; this phenomenon exerts a deep influence on surface properties such as surface electrical conductivity, chemisorption of ammonia and amines, and their transformation.

When surfaces are thoroughly dehydrated, constitution protons are probably delocalized in the oxygen framework and this delocalization process probably precedes dehydroxylation.

Dehydroxylation results in a partial or a total transformation of octahedral co-ordinated aluminum into four-fold coordinated atoms. Stresses arising from sharing adjacent octahedral edges are probably at the origin of the Lewis catalytically active sites.

The research reports reviewed are mainly those issued from the author’s laboratories, or by his correspondents.

Type
General
Copyright
Copyright © The Clay Minerals Society 1963

References

Bosmans, H., and Fripiat, J. J. (1958) Ionenuitwisselings vermogen en oppervlaktelad-ingsdichtheid van SiO2-Al2O3 gelen: Pedologie, v. 8, pp. 185198.Google Scholar
Brindley, G. W., and Nakahira, M. (1958) Further consideration of the crystal structure of kaolinite: Miner. Mag., v. 240, pp. 781786.Google Scholar
Brindley, G. W., and Nakahira, M. (1959) The kaolinite-mullite reaction series: I. Survey of outstanding problems: J. Am. Ceram. Soc., v. 42, p. 311324.CrossRefGoogle Scholar
Coggeshall, N. D. (1950) Electrostatic interaction in hydrogen bonding: J. Chem. Phys., v. 18, pp. 978983.CrossRefGoogle Scholar
Conway, B. E., Bockris, J. O. M., and Linton, H. (1956) Proton conductance and the existence of the H3O+ ion: J. Chem. Phys., v. 24, pp. 834850.CrossRefGoogle Scholar
De Kimpe, C., Gastuche, M. C., and Brindley, G. W. (1961) Ionic co-ordination in alumino-silicic gels in relation to clay minerals formation: Amer. Miner., v. 46, pp. 13701381.Google Scholar
De Kimpe, C. (1961) Synthèse des minéraux argileaux de la famille du kaolin, Ph.D. Thesis, Agronomic Institute of the University of Louvain (Belgium).Google Scholar
Ducros, P., and Dupont, M. (1962) Etude par résonance magnétique nucléaire des protons dans les argiles: Bull. Groupe Franç. des Argiles, tome XIII, Série 8, pp. 5963.CrossRefGoogle Scholar
Eeckman, J. P., and Laudelout, H. (1961) Chemical stability of hydrogen-mont- morillonite suspensions: Kolloid Zeitsch., v. 178, pp. 99107.CrossRefGoogle Scholar
Eischens, R. P., and Pliskin, W. A. (1958) The infrared spectra of adsorbed molecules: Adv. in Catalysis, Academic Press, N.Y., v. 10, pp. 256.Google Scholar
Ekka, E., and Fripiat, J. J. (1957) Etude des groupes hydroxyles de surface de la kaolinite. II. Variation de la capacité d’échange de bases en fonction du pH: Pedologie, v. 7, pp. 5158.Google Scholar
Fripiat, J. J., Gastuche, M. C., and Van Compernolle, G. (1954) Les groupes hydroxyles de surface de la kaolinite et sa capacité d’échange ionique: Trans. 5th Intern. Congress of Soil Science (Leopoldville), v. 2, pp. 401422.Google Scholar
Fripiat, J. J. (1957) Propriétés de surface des alumino-silicates: Bull. Groupe Franç. des Argiles, v. 9, pp. 2347.CrossRefGoogle Scholar
Fripiat, J. J., and Gastuche, M. C. (1958) Détermination de la surface hydroxylique par échange isotopique: Bull. Soc. Chim. de France, pp. 626635.Google Scholar
Fripiat, J. J., Chaussidon, J., and Touillaux, R. (1960) Study of dehydration of montmorillonite and vermiculite by infrared spectroscopy: J. Phys. Chem., v. 64, pp. 12341241.CrossRefGoogle Scholar
Fripiat, J. J., and Dondeyne, P. (1960) Hydratation de la kaolinite: J. de Chimie Physique, pp. 543552.CrossRefGoogle Scholar
Fripiat, J. J. Van Compernolle, G., and Servais, A. (1960) Etude de l'acidité de surface des silicates et alumino-silicates par titration en milieu non aqueux: Bull. Soc. Chim. de France, pp. 250259.Google Scholar
Fripiat, J. J. (1960) Progrès apporté par la chimie de surface à la connaissance des argiles: Bull. Soc. Franç. de Ceramique, v. 13, pp. 1324.Google Scholar
Fripiat, J. J. (1960) Surface properties of clays and gels: 7th Int. Congr. of Soil Science, Madison (Wise.) v. 4, pp. 502511.Google Scholar
Fripiat, J. J., Servais, A., and Leonard, A. (1962) Etude de ľadsorption des amines par les montmorillonites. I. Les processus chimiques: Bull. Soc. Chim. de France, pp. 617625. II. La structure des complexes: Ibid., pp. 625-635. III. La nature de la liaison amine-montmorillonite: Ibid., pp. 635-644.Google Scholar
Fripiat, J. J. and Uytterhoeven, J. (1962) Hydroxyl content in silica gel aerosil: J. Phys. Chem., v. 66, pp. 800805.CrossRefGoogle Scholar
Fripiat, J. J., Gastuche, M. C., and Brichard, R, (1962) Surface heterogeneity in silica gel from kinetics of isotopie exchange OH-OD: J. Phys. Chem., v. 66, pp. 805812.CrossRefGoogle Scholar
Fripiat, J. J., and Toussaint, F. (1963) Dehydroxylation of kaolinite. II. Conduсtometric measurements and infrared spectroscopy. J. Phys. Chem., v. 67, pp. 3036.CrossRefGoogle Scholar
Fripiat, J. J., and Gastuche, M. C. (1963) L’état d'organisation des produits de éepart et la synthèse des argiles. International Clay Conference 1963, v. 1, pp. 5365.Google Scholar
Gastuche, M. C., and De Kimpe, C. (1959) Tentative de synthèse des argiles du groupe du kaolin dans les conditions normales de température et de pression: Bull. Classe Sciences, Acad. Royale de Belgique, v. 45, pp. 10871104.CrossRefGoogle Scholar
Gastuche, M. C., Delmon, V., and Vielvoye, L. (1960) La cinétique des réactions hétérogènes. Attaque du réseau silico-aluminique des kaolinites par l'acide chlorhydrique: Bull. Soc. Chim. de France, pp. 6070.Google Scholar
Gastuche, M. C., Toussaint, F., Fripiat, J. J., Touillaux, R., and Van Meersche, M. (1963) Study of intermediate stages in the transformation kaolin-metakaolin. Clay Miner. Bull., v. 5, pp. 227236.CrossRefGoogle Scholar
Green-Kelly, R. (1962) Charge densities and heats of immersion of some clay minerals: Clay Minerals Bull., v. 5, pp. 18.CrossRefGoogle Scholar
Hendricks, S. V., and Dyal, L. A. (1950) Total surface of clays in polar liquids as a characteristic index: Soil Science, v. 69, pp. 421432.Google Scholar
Iler, R. K. (1955) The colloid chemistry of silica and silicates: Cornell Univ. Press, Ithaca, N.Y.CrossRefGoogle Scholar
Keenan, A. G., Mooney, R. W., and Wood, L. A. (1951) The relation between exchangeable cations and water adsorption on kaolinite: J. Phys. Coll. Chem., v. 55, pp. 1462.CrossRefGoogle Scholar
Kiselev, A. V., and Lygin, V. I. (1959) Infrared absorption spectra and structure of the hydroxyl layers on silicas of different degrees of hydration: Colloid J. (U.S.S.R.), v. 21, pp. 561568.Google Scholar
Laudelout, H. (1957) Etude de la répartition des charges sur la surface des particules argileuses: Bull. Groupe Franç des Argiles, v. 9, pp. 6165.CrossRefGoogle Scholar
Lyon, P. T. J., and Tuddenham, W. M. (1960) Determination of tetrahedral aluminum in mica by infra-red absorption analysis: Nature, v. 185, pp. 374375.CrossRefGoogle Scholar
Mathieu, J. P., and Poulet, H. (1960) Les fréqiences fondamentales de vibration de l'ion NH4+: Spectrochim. Acta, v. 16, pp. 696703.CrossRefGoogle Scholar
Mering, J. (1946) On the hydration of montmorillonite: Trans. Farad. Soc., v. 42, pp. 205219.CrossRefGoogle Scholar
Milliken, T. H., Mills, G. A., and Oblad, A. G. (1950) The chemical characteristics and structure of cracking catalysts: Disc. Farad. Soc., v. 8, pp. 279290.CrossRefGoogle Scholar
Mortland, M. M., Fripiat, J. J., Chaussidon, J., and Uytterhoeven, J. (1963) Interaction between ammonia and the expanding lattices of montmorillonite and vermiculite: J. Phys. Chem., v. 67, pp. 248258.CrossRefGoogle Scholar
Murphy, E. J. (1951) The concentration of molecules on internal surfaces in ice: J. Chem. Phys., v. 19, pp. 15161518.CrossRefGoogle Scholar
Pauling, L. (1945) The nature of the chemical bond: Cornell Univ. Press, Ithaca, N.Y.Google Scholar
Pickett, A. G., and Lemcoe, M. M. (1950) An investigation of shear strength of the clay water system by radio-frequency spectroscopy: J. Geophys. Research, v. 64, pp. 15791586.CrossRefGoogle Scholar
Power, H., and Marshall, C. E. (1934) The role of aluminum in the reactions of the clays: Soc. Chem. Ind., v. 53, pp. 750760.Google Scholar
Schofield, R. K. (1947) Calculation of surface areas from measurements of negative adsorption: Nature, v. 160, pp. 408410.CrossRefGoogle Scholar
Schofield, R. K. (1956) Intervention at the 6th Intern. Congress of Soil Science (Paris), v. A, p. 65.Google Scholar
Sidorov, A. N. (1956) Study of adsorption on porous glass by means of infrared absorption spectra: Zhur. Fiz. Khim., v. 30, pp. 9951006.Google Scholar
Sidorov, A. N. (1960) Spectral investigation of the adsorption of water on porous glass as a function of the degree of hydration of its surface: Optics and Spectroscopy (U.S.S.R.), v. 8, pp. 424428.Google Scholar
Stubican, V., and Roy, R. (1961) Isomorphous substitution and infrared spectra of the layer lattice silicates: Am. Min., v. 46, pp. 3251.Google Scholar
Tamele, M. W. (1950) Chemistry of the surface and the activity of alumino-silica cracking catalysts: Disc. Farad. Soc., v. 8, pp. 270279.CrossRefGoogle Scholar
Tscheischwili, L., Bussem, W., and Weil, W. (1939) Metakaolin: Ber. Deut. Keram. Ges., v. 20, pp. 248276.Google Scholar
Uytterhoeven, J., and Fripiat, J. J. (1962) Etude des hydroxyles d'une silico-alumine amorphe: Bull. Soc. Chim. de France, pp. 788792.Google Scholar
Uytterhoeven, J., Hellinckx, E., and Fripiat, J. J. (1963) Le frittage des gels de silice: Silicates Industriels, pp. 38.Google Scholar
Uytterhoeven, J. (1963) Determination des groupes hydroxyles superficiels de la kaolinite par les organométalliques (CH3MgI et CH3Li): Bull. Groupe Franç. des Argiles, v. 10, pp. 6975.Google Scholar
Vivaldi, J. L. M., and Hendricks, S. P. (1952) Reactividad de los iones H de las arcillas en disolventes no polares: An. Edaf. Fistol. Veg., v. 11, pp. 601629.Google Scholar
Waldron, R. D., and Hornig, D. F. (1953) Infrared spectra and structure of crystalline ammonia hydrates: J. Am. Chem. Soc., v. 75, pp. 60796080.CrossRefGoogle Scholar
White, E., McKinstry, H., and Bates, T. F. (1958) Crystal chemical studies by X-ray fluorescence: 7th Ann. Conf. Ind. Appl. X-ray analysis, Univ. of Denver (U.S.A.), pp. 239245.Google Scholar
Zhdanov, S. P. (1958) The role of the surface hydroxyl groups in the water adsorption of porous glass: Zhur. Fiz. Khim., v. 32, pp. 699706.Google Scholar