Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T09:54:06.305Z Has data issue: false hasContentIssue false

Refinement of the Kaolinite Structure From Single-Crystal Synchrotron Data

Published online by Cambridge University Press:  28 February 2024

R. B. Neder*
Affiliation:
Institut für Kristallographie, Theresienstr. 41, 80333 München, Germany
M. Burghammer*
Affiliation:
Institut für Kristallographie, Theresienstr. 41, 80333 München, Germany
TH. Grasl
Affiliation:
Institut für Kristallographie, Theresienstr. 41, 80333 München, Germany
H. Schulz
Affiliation:
Institut für Kristallographie, Theresienstr. 41, 80333 München, Germany
A. Bram*
Affiliation:
ESRF, B.P. Box 220, 38043 Grenoble, France
S. Fiedler
Affiliation:
ESRF, B.P. Box 220, 38043 Grenoble, France
*
Present address: Mineralogisches Institut, Am Hubland, 97074 Würzburg, Germany.
Present address: ESRF, B,P. Box 220, 38043 Grenoble, France.
§Present address: Siemens AG.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The crystal structure of single crystals of kaolinite from Keokuk, Iowa, was refined using data measured at the microfocus X-ray beamline at the ESRF, Grenoble, France (λ = 0.6883, T = room temperature). The volume of the crystals was 8 and 0.8 μm3, respectively. Unit-cell parameters are: a = 5.154(9) Å, b = 8.942(4) Å, c = 7.401(10) Å, α = 91.69(9)°, β = 104.61(5)°, γ = 89.82(4)°. Space group Cl is consistent with the observed data. All non-hydrogen atoms were independently refined with anisotropic displacement parameters. The positions and isotropic displacement parameters for the three interlayer H atoms were refined also. The position of the intralayer H was found by difference-Fourier methods, although refinement was not possible. Difference-Fourier maps suggested large anisotropic displacement vectors of this intralayer H, however, no evidence for a second maximum was found. The diffraction patterns show diffuse scattering in streaks parallel to [001]* through hkl reflections with hk ≠ 0, which is caused by stacking faults. No twinning was observed for either of the two crystals.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Adams, J.M., 1983 Hydrogen atom positions in kaolinite by neutron profile refinement Clays and Clay Minerals 31 352356 10.1346/CCMN.1983.0310504.CrossRefGoogle Scholar
Bish, D.L., 1993 Rietveld refinement of the kaolinite structure at 1.5 K Clays and Clay Minerals 41 738744 10.1346/CCMN.1993.0410613.CrossRefGoogle Scholar
Bish, D.L. and Von Dreele, R.B., 1989 Rietveld refinement of non-hydrogen atom positions in kaolinite Clays and Clay Minerals 37 289296 10.1346/CCMN.1989.0370401.CrossRefGoogle Scholar
Bookin, A.S. Drits, V.A. Plançon, A. and Tschoubar, C., 1989 Stacking faults in kaolinite-group minerals in the light of real structural features Clays and Clay Minerals 37 297307 10.1346/CCMN.1989.0370402.CrossRefGoogle Scholar
Grasl, T., Neder, R.B., Schulz, H. and Burghammer, M. (1998) Einkristallbeugungsexperimente an einem stark fehlgeordneten Kaolinit. Zeitschrift für Kristallographie, Supplement, 15, 136.Google Scholar
Hess, A.C. and Saunders, V.R., 1992 Periodic ab initio Hartree-Fock calculations of the low-symmetry mineral Kaolinite The Journal of Physical Chemistry 96 43674374 10.1021/j100190a047.CrossRefGoogle Scholar
Hobbs, J.D. Cygan, R.T. Nagy, K.L. Schultz, P.A. and Sears, M.P., 1997 All-atom ab initio energy minimization of the kaolinite crystal structure American Mineralogist 82 657662 10.2138/am-1997-7-801.CrossRefGoogle Scholar
Koch, A., 1994 Lens coupled scintillating screen-CCD X-ray area detector with a high detective quantum efficiency Nuclear Instruments and Methods in Physics Research A 348 654658 10.1016/0168-9002(94)90818-4.CrossRefGoogle Scholar
Neder, R.B. Burghammer, M. Grasl, T. and Schulz, H., 1996 Mounting an individual submicrometer sized crystal Zeitschrift für Kristallographie 211 365367.CrossRefGoogle Scholar
Neder, R.B. Burghammer, M. Grasl, T. Schulz, H. Bram, A. Fiedler, S. and Riekel, C.h., 1996 Single crystal diffraction by submicrometer sized kaolinite; observation of Bragg reflections and diffuse scattering Zeitschrift für Kristallographie 211 763765.CrossRefGoogle Scholar
Plançon, A. Giese, R.F. Snyder, R. Drits, V.A. and Bookin, A.S., 1989 Stacking faults in the kaolinite-group minerals: Defect structures of kaolinite Clays and Clay Minerals 37 203210 10.1346/CCMN.1989.0370302.CrossRefGoogle Scholar
Smrčok, L. Gyepesová, D. and Chmielová, M., 1990 New X-ray Rietveld refinement of kaolinite from Keokuk, Iowa Crystal Research and Technology 25 105110 10.1002/crat.2170250120.CrossRefGoogle Scholar
Suitch, P.R. and Young, R.A., 1983 Atom positions in highly ordered kaolinite Clays and Clay Minerals 31 357366 10.1346/CCMN.1983.0310505.CrossRefGoogle Scholar
Thompson, J.G. and Withers, R.L., 1987 A transmission electron microscopy contribution to the structure of kaolinite Clays and Clay Minerals 35 237239 10.1346/CCMN.1987.0350311.CrossRefGoogle Scholar
Thompson, JG F Gerald, J.D. and Withers, R.L., 1989 Electron diffraction evidence for C-centering of non-hydrogen atoms in kaolinite Clays and Clay Minerals 37 563565 10.1346/CCMN.1989.0370610.CrossRefGoogle Scholar
Young, R.A. and Hewat, A.W., 1988 Verification of the triclinic crystal structure of kaolinite Clays and Clay Minerals 36 225232 10.1346/CCMN.1988.0360303.CrossRefGoogle Scholar