Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-21T13:25:55.041Z Has data issue: false hasContentIssue false

Zeolite Reactions in the Tuffaceous Sediments at Teels Marsh, Nevada

Published online by Cambridge University Press:  01 July 2024

Marsha W. Taylor*
Affiliation:
Department of Geology, University of Wyoming, Laramie, Wyoming 82071
Ronald C. Surdam
Affiliation:
Department of Geology, University of Wyoming, Laramie, Wyoming 82071
*
1Present address: Mobil, P.O. Box 5444, Denver, Colorado 80217.

Abstract

The most prominent authigenic reaction in Holocene tuffaceous sediments at Teels Marsh, Nevada, is the hydration of rhyolitic glass by interstitial brines and the subsequent formation of phillipsite. This reaction has the form: rhyolitic glass + H2O → hydrous alkali alumninosilicate gel → phillipsite. Phillipsite is the most abundant authigenic phase in the tuffaceous sediments (>95%), analcime is the next most abundant phase, and clinoptilolite occurs as a trace mineral in the <2-mm fraction. Analcime forms by the reaction of phillipsite and Na+. Gaylussite and searlesite also are common authigenic phases at Teels Marsh. The concentration of silica in the interstitial brines is controlled by one or more of the authigenic reactions at less than 100 ppm. A stoichiometric equation for the reaction of phillipsite to analcime at Teels Marsh is:

$$0.43N{a + }\, + {K_{0.43}}N{a_{0.57}}AlS{i_{3.1}}{O_{8.2}}\, \cdot \,3.2{H_2}O\, \to \,NaAlS{i_2}{O_6}\, \cdot \,{H_2}O\, + \,1.1{H_4}Si{O_4}\, + \,0.43{K + }.$$

Sodium and potassium activities of brines associated with both phillipsite and analcime were used to estimate the equilibrium constant for this reaction as 3.04 × 10−5. The ΔG0 value for the reaction is +6.2 kcal/mole at 25°C and 1 atm pressure. The estimated ΔG0 value of phillipsite, using this reaction, is −1072.8 kcal/mole at 25°C and 1 atm.

Резюме

Резюме

Наиболее рельефной аутигенной реакцией в голоценовых туфовых осадках в Тиилс Марш, Невада является гидрация риолитового стекла трещинной соленой водой и последующее образование филлипсита. Эта реакция протекает следующим образом: риолитовое стекло + H2O → воднощелочный алюминосиликатный гель → филлипсит. Филлипсит является наиболее распространенной аутигенной фазой в туфовых осадках (>95%), за ним идет анальцим, тогда как следы клиноптилолита появляются во фракции размером <2 мм. Анальцим образуется путем реакции филлипсита и Na+. Гейлюсит и сирлесит являются также популярными аутогенными фазами в Тиилс Марш. Концентрация кремнезема в трещинных соленых водах контролируется одной или более аутигенными реакциями при менее чем 100 милионных. Стехиометрическое уравнение для реакции преобразования филлипсита в анальцим:

$$0.43N{a + }\, + {K_{0,43}}N{a_{0,57}}AlS{i_{3,1}}{O_{8,2}}\, \cdot \,3,2{H_2}O\, \to \,NaAlS{i_2}{O_6}\, \cdot \,{H_2}O\, + \,1,1{H_4}Si{O_4}\, + \,0,43{K + }.$$

Натриевые и калиевые активности соленой воды, связанные с обоими, филлипситом и анальцимом, были использованы для определения константы равновесия для этой реакции, равной 3,04 × 10-5. Величина ΔG0 для реакйии равна +6,2 ккал/моль при 25°С и давлении 1 атм. Величина ΔG0 для филлипсита, определенная при использовании этой реакции, равна −1072,8 ккал/моль при 25°C и 1 атм. [E.C.]

Resümee

Resümee

Die wichtigste authigene Reaktion in holozänen tuffhaltigen Sedimenten von Teels Marsh, Nevada, ist die Hydratation von Rhyolithglas durch Porenlösungen und die darauf folgende Bildung von Phillipsit. Diese Reaktion verläuft folgendermaßen: Rhyolithglas + H2O → wasserhaltiges Alkali-Alumosilikat-Gel → Phillipsit. Phillipsit ist die häufigste authigene Phase in den tuffhaltigen Sedimenten (>95%), Analcim ist die nächsthäufige Phase. Klinoptilolith kommt nur in Spuren in der Fraktion <2 mm vor. Analcim bildet sich durch die Reaktion von Phillipsit mit Na+. Gaylussit and Searlesit sind ebenfalls authigene Phasen in Teels Marsh. Die Konzentration an Siliziumdioxid in den Porenlösungen wird durch eine oder mehrere der authigenen Reaktionen kontrolliert und beträgt weniger als 100 ppm. Eine stöchiometrische Gleichung für die Reaktion von Phillipsit zu Analcim in Teels Marsh lautet:

$$0,43N{a + }\, + {K_{0,43}}N{a_{0,57}}AlS{i_{3,1}}{O_{8,2}}\, \cdot \,3,2{H_2}O\, \to \,NaAlS{i_2}{O_6}\, \cdot \,{H_2}O\, + \,1,1{H_4}Si{O_4}\, + \,0,43{K + }.$$

Die Natrium- und Kaliumaktivitäten der Porenlösungen, die sowohl mit Phillipsit als auch mit Analcim im Gleichgewicht stehen, wurden verwendet, um die Gleichgewichtskonstante für diese Reaktion abzuschätzen. Sie beträgt 3,04 × 10−5. Der ΔG0-Wert für die Reaktion beträgt +6,2 kcal/mol bei 25°C und 1 atm Druck. Der geschätzte ΔG0-Wert von Phillipsit beträgt, bei Verwendung dieser Reaktion, −1072,8 kcal/mol bei 25°C und 1 atm. [U.W.]

Résumé

Résumé

La réaction authigénique la plus proéminente dans les sédiments holocènes tufacés à Teels Marsh, au Nevada, est l'hydration du verre rhyolitique par des saumures interstitiales et la formation ultérieure de phillipsite. Cette réaction a la forme suivante: verre rhyolitique + H2O → gel alkali aluminosilicate hydre → phillipsite. La phillipsite est la phase authigénique la plus abondante dans les sédiments tufacés (>95%), suivie par la phase analcime, seconde en abondance, et la clinoptilolite apparait comme trace minérale dans la fraction <2 mm. L'analcime est produite par la réaction de phillipsite et de Na+. La gaylussite et la searlesite sont aussi des phases authigéniques courantes à Teels Marsh. La concentration de silice dans les saumures interstitiales est controlée par une ou plusieurs réactions authigéniques à moins de 100 ppm. Une équation stoichiométrique pour la réaction de phillipsite en analcime à Teels Marsh est:

$$0,43N{a + }\, + {K_{0,43}}N{a_{0,57}}AlS{i_{3,1}}{O_{8,2}}\, \cdot \,3.2{H_2}O\, \to \,NaAlS{i_2}{O_6}\, \cdot \,{H_2}O\, + \,1,1{H_4}Si{O_4}\, + \,0,43{K + }.$$

Les activités du sodium et du potassium des saumures avec à la fois la phillipsite et l'analcime ont été employées pour estimer comme constante d’équilibre pour cette réaction 3,04 × 10−5. La valeur ΔG0 pour la réaction est +6,2 kcal/mole à 25°C et à 1 atm de pression. La valeur estimée de ΔG0 pour la phillipsite, utilisant cette réaction, est −1072 kcal/mole à 25°C et 1 atm. [D.J.]

Type
Research Article
Copyright
Copyright © 1981, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Public Health Association, 1971 Standard methods for the examination of water and wastewater 13th ed.. American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington, D.C., 874 pp.Google Scholar
Carroll, D., (1970) Clay minerals: A guide to their X-ray identification Geol. Soc. Amer. Spec. Pap. .CrossRefGoogle Scholar
Drever, J. I., (1973) The preparation of oriented clay mineral specimens for X-ray diffraction analysis by a filter-membrane peel technique Amer. Mineral. 58 553554.Google Scholar
Drew, P., (1969) Geochemistry of iron and clay mineralogy of playa sediments from Teels Marsh, Nevada .Google Scholar
Eugster, H. P., (1970) Chemistry and origin of the brines of Lake Magadi, Kenya Mineral Soc. Amer. Spec. Pap. 3 215235.Google Scholar
Eugster, H. P. Hardie, L. A. and Lerman, A., (1978) Saline lakes Chemistry, Geology, and Physics of Lakes New York Springer-Verlag 237289.CrossRefGoogle Scholar
Everts, C. H., (1969) The evolution of playa waters, Teels Marsh, Mineral County, Nevada .Google Scholar
Fanning, K. A. and Pilson, M. E. Q., (1973) On the spectrophotometric determination of dissolved silica in natural waters Analytical Chemistry 45 136.CrossRefGoogle ScholarPubMed
Ferguson, H. G., Muller, S. W., and Cathart, S. H. (1954) Geologic map of the Mina quadrangle, Nevada: U.S. Geol. Surv. Geol. Quad. Map GQ 45.Google Scholar
Garrels, R. M. and Christ, C. L., (1966) Solutions, Minerals and Equilibria .Google Scholar
Garrels, R. M. and Mackenzie, F. T., (1967) Origin of the chemical composition of some springs and lakes Advances in Chemistry Series 222242.Google Scholar
Garrels, R. M. and Mackenzie, F. T., (1971) Evolution of Sedimentary Rocks New York Norton.Google Scholar
Hardie, L. A. and Eugster, H. P., (1970) The evolution of closed-basin brines Mineral. Soc. Amer. Spec. Pap. 3 273290.Google Scholar
Hardie, L. A. Smoot, J. P. and Eugster, H. P., (1978) Saline lakes and their deposits: a sedimentological approach Int. Sed. Assoc. Spec. Pub. 2 741.Google Scholar
Hay, R. L., (1964) Phillipsite of saline lakes and soils Amer. Mineral. 49 13661387.Google Scholar
Hay, R. L., (1966) Zeolites and zeolitic reactions in sedimentary rocks Geol. Soc. Amer. Spec. Pap. .Google Scholar
Hay, R. L., (1970) Silicate reactions in three lithofacies of semi-arid basin, Olduvai Gorge, Tanzania Mineral. Soc. Amer. Spec. Pap. 3 237255.Google Scholar
Jeffery, P. G., (1970) Chemical Methods of Rock Analysis New York Pergamon Press.Google Scholar
Jones, B. F., (1966) Geochemical evolution of closed basin waters in the western Great Basin 2nd. Symp. Salt, Ohio Geol. Soc 181200.Google Scholar
Mariner, R. H. and Surdam, R. C., (1970) Alkalinity and formation of zeolites in saline alkaline lakes Science 170 977980.CrossRefGoogle ScholarPubMed
Robie, R. A. and Waldbaum, D. R., (1968) Thermodynamic properties of minerals and related substances at 298.15°K (25°C) and one atmosphere (1.1013 bars) pressure and at high temperatures U.S. Geol. Surv. Bull. .Google Scholar
Ross, D. C. (1961) Geology and mineral deposits of Mineral County, Nevada: Nevada Bur. Mines Bull. 58, 58 pp.Google Scholar
Sheppard, R. A. and Gude, A. J., (1968) Distribution and genesis of authigenic silicate minerals in tuffs of Pleistocene Lake Tecopa, Inyo County, California U.S. Geol. Surv. Prof. Paper .CrossRefGoogle Scholar
Sheppard, R. A. and Gude, A. J., (1969) Diagenesis of tuffs in the Barstow Formation, Mud Hills, San Bernardino County, California U.S. Geol. Surv. Prof. Paper .Google Scholar
Sheppard, R. A. and Gude, A. J., (1973) Zeolites and associated authigenic silicate minerals in tuffaceous rocks of the Big Sandy Formation, Mohave County, Arizona U.S. Geol. Surv. Prof. Paper .CrossRefGoogle Scholar
Smith, C. L., (1974) Chemical controls on weathering and trace metal distribution at Teels Marsh, Nevada .Google Scholar
Smith, C. L. and Drever, J. I., (1976) Controls on the chemistry of springs at Teels Marsh, Mineral County, Nevada Geochim. Cosmochim. Acta 40 10811093.Google Scholar
Stumm, W. and Morgan, J. J., (1970) Aquatic Chemistry, An Introduction Emphasizing Chemical Equilibria in Natural Waters New York Wiley Interscience.Google Scholar
Surdam, R. C. and Eugster, H. P., (1976) Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya Geol. Soc. Amer. Bull. 87 17391752.2.0.CO;2>CrossRefGoogle Scholar
Surdam, R. C. and Mariner, R. H., (1971) The genesis of phillipsite in recent tuffs at Teels Marsh, Nevada Geol. Soc. Amer. Abs. with Prog. 3 725.Google Scholar
Surdam, R. C. and Parker, R. B., (1972) Authigenic aluminosilicate minerals in the tuffaceous rocks of the Green River Formation, Wyoming Geol. Soc. Amer. Bull. 83 689700.CrossRefGoogle Scholar
Surdam, R. C. Sheppard, R. A., Sand, L. B. and Mumpton, F. A., (1978) Zeolites in saline, alkaline-lake deposits Natural Zeolites: Occurrence, Properties, Use Elmsford, N.Y. Pergamon Press 145174.Google Scholar
Taylor, M. W., (1978) Mineral reactions in the tuffaceous sediments at Teels Marsh, Nevada .Google Scholar
Vanderburg, W. O., (1937) Reconnaissance of mining districts in Mineral County, Nevada U.S. Bur. Mines Inf. Circ. .Google Scholar
Wood, S. H., (1977) Distribution, correlation and radiocarbon dating of late Holocene tephra, Mono and Inyo craters, eastern California Geol. Soc. Amer. Bull. 88 8995.2.0.CO;2>CrossRefGoogle Scholar