Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T00:46:54.108Z Has data issue: false hasContentIssue false

An Electron Optical investigation of Aluminosilicate Cements in Silcretes

Published online by Cambridge University Press:  28 February 2024

Balbir Singh
Affiliation:
Soil Science and Plant Nutrition, School of Agriculture, The University of Western Australia, Nedlands, W.A. 6009, Australia
R. J. Gilkes
Affiliation:
Soil Science and Plant Nutrition, School of Agriculture, The University of Western Australia, Nedlands, W.A. 6009, Australia
C. R. M. Butt
Affiliation:
CSIRO, Division of Exploration Geoscience, Private Bag, P.O. Wembley, W.A. 6014, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Silcretes developed within the in situ regolith in the Barr Smith Range, Western Australia, were investigated using optical and electron-beam techniques. One of the cementing agents in these silcretes showed gel-like optical properties and had a variable aluminosilicate chemical composition at the scale of electron microprobe analysis so that it might be considered as allophane-like material. High resolution transmission electron microscopy demonstrated that the material consists of a fine-grained and poorly ordered kaolinite embedded in a matrix of amorphous silica.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Ahn, J. H. and Peacor, D. R., 1986 Transmission and analytical electron microscopy of the smectite-to-illite transition Amer. Mineral. 72 353356.Google Scholar
Anand, R. R., Gilkes, R. J., Armitage, T. M. and Hillyer, J. W., 1985 Feldspar weathering in a lateritic saprolite Clays & Clay Minerals 33 3143 10.1346/CCMN.1985.0330104.CrossRefGoogle Scholar
Baes, C. F. and Mesmer, R. E., 1976 The Hydrolysis of Cations New York John Wiley.Google Scholar
Banfield, J. F. and Eggleton, R. A., 1988 Transmission electron microscope study of biotite weathering Clays & Clay Minerals 36 4760 10.1346/CCMN.1988.0360107.CrossRefGoogle Scholar
Butt, C. R. M., 1981 The nature and origin of the lateritic weathering mantle, with particular reference to Western Australia Geophysical Prospecting in Deeply Weathered Terrain 6 1129.Google Scholar
Butt, C. R. M., 1983 Aluminosilicate cementation of saprolite, grits and silcretes in Western Australia J. Geol. Soc. Aust. 30 179186 10.1080/00167618308729247.CrossRefGoogle Scholar
Butt, C. R. M., 1985 Granite weathering and silcrete formation on the Yilgarn Block, Western Australia Aust. J. Earth Sci. 32 415432 10.1080/08120098508729341.CrossRefGoogle Scholar
Callen, R. A., 1983 Late Tertiary “grey billy” and the age and origin of surfacial silicification (silcrete) in South Australia J. Geol. Soc. Aust. 30 393410 10.1080/00167618308729265.CrossRefGoogle Scholar
Chadwick, O. A., Hendricks, D. M. and Nettleton, W. D., 1987 Silica in Duric soils: I. A depositional model Soil Sci. Soc. Am. J. 51 975982 10.2136/sssaj1987.03615995005100040028x.CrossRefGoogle Scholar
Chadwick, O. A., Hendricks, D. M. and Nettleton, W. D., 1987 Silica in duric soils: II. Mineralogy Soil Sci. Soc. Am. J. 51 982985 10.2136/sssaj1987.03615995005100040029x.CrossRefGoogle Scholar
Eggleton, R. A., 1987 Noncrystalline Fe-Si-Al-oxyhydrox-ides Clays & Clay Minerals 35 2937 10.1346/CCMN.1987.0350104.CrossRefGoogle Scholar
Gilkes, R. J., Anand, R. R. and Suddhiprakarn, A., 1986 How the microfabric of soils may be influenced by the structure and chemical composition of parent minerals Trans. Int. Soil Sci. Conf. Hamburg 6 10931106.Google Scholar
Gilkes, R. J., Scholz, A. and Dimmock, G. M., 1973 Lateritic deep weathering of granite: / Soil Sci. 24 523536 10.1111/j.1365-2389.1973.tb02319.x.CrossRefGoogle Scholar
Gilkes, R. J. and Suddhiprakarn, A., 1979 Biotite alteration in deeply weathered granite. II. The oriented growth of secondary minerals Clays and Clay Minerals 27 361367 10.1346/CCMN.1979.0270506.CrossRefGoogle Scholar
Hutton, J. T., Twidale, C. R., Milnes, A. R. and Langford-Smith, T., 1978 Characteristics and origin of some Australian silcretes Silcrete in Australia Armidale, Australia University of New England.Google Scholar
Jones, J. B. and Segnit, E. R., 1971 The nature of opal. I. Nomenclature and constituent phases J. Geol Soc. Aust. 18 5768 10.1080/00167617108728743.CrossRefGoogle Scholar
Kahalf, F. I., 1988 Petrography and diagenesis of silcrete from Kuwait, Arabian Gulf J. Sed. Petrol. 58 10141022.Google Scholar
Klimentidis, R. E. and Mackinnon, I. D. R., 1986 High-resolution imaging of ordered mixed-layer clays Clays & Clay Minerals 34 155164 10.1346/CCMN.1986.0340206.CrossRefGoogle Scholar
Langford-Smith, T., 1978 Silcretes in Australia .Google Scholar
McCrea, A. F., Anand, R. R. and Gilkes, R. J., 1990 Min-eralogical and physical properties of lateritic pallid zone materials developed from granite and dolerite Geoderma 47 3357 10.1016/0016-7061(90)90046-C.CrossRefGoogle Scholar
Milnes, A. R., 1986 Armoured landscapes Geology Today 7374.CrossRefGoogle Scholar
Milnes, A. R. and Hutton, J. T., 1974 The nature of mirocryptocrystalline titania in ‘silcrete’ skins from the Beda Hill area of South Australia Search 5 153154.Google Scholar
Milnes, A. R., Thiry, M., Martini, I. P. and Chesworth, W., 1992 Silcretes Weathering Soils and Paleosols Amsterdam Elsevier.Google Scholar
Norton, S. A., 1973 Laterite and bauxite formation Econ. Geol. 68 353361 10.2113/gsecongeo.68.3.353.CrossRefGoogle Scholar
Oilier, C. D. and Jeans, J. N., 1978 Early landform evolution Australia, a Geography Sydney Sydney University Press.Google Scholar
Parfitt, R. L. and Henmi, T., 1980 Structure of some al-lophanes from New Zealand Clays & Clay Minerals 28 285294 10.1346/CCMN.1980.0280407.CrossRefGoogle Scholar
Plancon, A. and Tchoubar, C., 1977 Determination of structural defects in phyllosilicates by X-ray diffraction. Part II. Nature and proportions of defects in natural kaolin-ites Clays & Clay Minerals 25 436450 10.1346/CCMN.1977.0250610.CrossRefGoogle Scholar
Senkayi, A. L., Dixon, J. B., Hossner, L. R., Yerima, B P K and Wilding, L. P., 1985 Replacement of quartz by opaline silica during weathering of petrified wood Clays & Clay Minerals 33 525531 10.1346/CCMN.1985.0330607.CrossRefGoogle Scholar
Singh, B. and Gilkes, R. J., 1991 Weathering of chro-mian muscovite to kaolinite Clays & Clay Minerals 39 571579 10.1346/CCMN.1991.0390602.CrossRefGoogle Scholar
Singh, B. and Gilkes, R. J., 1992 XP AS: An interactive computer program for analysis of powder X-ray diffraction patterns Powder Diffraction 7 610 10.1017/S0885715600015992.CrossRefGoogle Scholar
Singh, B. and Gilkes, R. J., 1992 Properties of soil kaolinites from south-western Australia J. Soil Sci. .CrossRefGoogle Scholar
Smale, D., 1973 Silcretes and associated silica diagenesis in southern Africa and Australia J. Sed. Petrol. 43 10771089.Google Scholar
Stephens, C. G., 1971 Laterite and silcrete in Australia: A study of the genetic relationship of laterite and silcrete and their companion materials, and their collective significance in the formation of the weathered mantle, soils, relief and drainage of the Australian continent Geoderma 5 552 10.1016/0016-7061(71)90023-1.CrossRefGoogle Scholar
Summerfield, M. A., 1982 Distribution, nature and probable genesis of silcrete in arid and semi-arid southern Africa Aridic Soils and Geomorphic Processes 1 3765.Google Scholar
Summerfield, M. A., Goudie, A. S. and Pye, K., 1983 Silcrete Chemical Sediments and Geomorphology London Academic Press 5991.Google Scholar
Thiry, M. and Milnes, A. R., 1990 Pedogenic and groundwater silcretes at Stuart Creek opal field, South Australia J. Sed. Petrol. 61 111127.Google Scholar
Thornber, M. R., Bettenay, E. and Russell, W. G. R., 1987 A mechanism of aluminosilicate cementation to form a hardpan Geochim. Cosmochim. Acta 51 23032310 10.1016/0016-7037(87)90283-3.CrossRefGoogle Scholar
Trunz, V., 1976 The influence of crystallite size on the apparent basal spacings of kaolinite Clays & Clay Minerals 24 8487 10.1346/CCMN.1976.0240206.CrossRefGoogle Scholar
Veblen, D. R., 1983 Microstructures and mixed layering in intergrown wonestie, chlorite, talc, biotite and kaolinite Amer. Mineral. 68 566580.Google Scholar
Veblen, D. R. and Buseck, P. R., 1980 Chain-width order and disorder in biopyriboles Amer. Mineral. 64 687700.Google Scholar
Wada, K., Dixon, J. B. and Weed, S. B., 1989 Allophane and imogolite Minerals in Soil Environments .CrossRefGoogle Scholar
Yau, Y. C., Anovitz, L. M., Essene, E. J. and Peacor, D. R., 1984 Phlogopite-chlorite reaction mechanisms and physical conditions during retrograde reaction in the marble formation, Franklin, New Jersey Contrib. Mineral. Petrol. 88 299308 10.1007/BF00380175.CrossRefGoogle Scholar