Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-22T12:24:34.175Z Has data issue: false hasContentIssue false

An Expansible Mineral Having High Rehydration Ability

Published online by Cambridge University Press:  01 July 2024

Katsutoshi Tomita
Affiliation:
Institute of Earth Sciences, Faculty of Science, Kagoshima University, Kagoshima, Japan
Mitsuhiko Dozono
Affiliation:
Institute of Earth Sciences, Faculty of Science, Kagoshima University, Kagoshima, Japan

Abstract

An interstratified mineral (mica-montmorillonite) from a hydrothermally altered andesite in the southern part of Satsuma Peninsula, Japan fully rehydrates after having been heated to 800°C.

Résumé

Résumé

Un minéral interstratifié (mica-montmorillonite) provenant d’une andésite altérée par voie hydrothermale dans la partie sud de la péninsule de Satsuma, Japon, se réhydrate entièrement après avoir été chauffée à 800°C.

Kurzreferat

Kurzreferat

Ein Wechsellagerungsmineral (Glimmer-Montmorillonit) aus einem hydrothermal umgewandelten Andesit im südlichen Teil der Satsuma-Halbinsel, Japan, zeigt nach Erhitzung auf 800°C vollständige Rehydratisierung.

Резюме

Резюме

Минерал с перемежающимся напластованием (слюда-монтмориллонит) от гидротермически измененного андезина из южной части Сатсумского полуострова (Япония) после нагрева до 800°С полностью вновь гидратируется.

Type
Research Article
Copyright
Copyright © 1973 The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Granquist, W. T. and Kennedy, J. V., (1967) Sorption of water at high temperatures on certain clay mineral surfaces. Correlation with lattice fluoride Clays and Clay Minerals 15 103117.CrossRefGoogle Scholar
Greene-Kelly, R., (1953) Irreversible dehydration in montmorillonite—II Clay Miner. Bull. 2 5256.CrossRefGoogle Scholar
MacEwan, D. M. C., (1956) Fourier transform methods for studying scattering from lamellar systems—I. A direct method for analysing interstratified minerals Kolloid Z. 149 96108.CrossRefGoogle Scholar
Scott, A. D., Hunziker, R. R. and Hanway, J. J., (1960) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron—I. Preliminary experiments Soil Sci. Soc. Am. Proc. 24 191194.CrossRefGoogle Scholar
Scott, A. D. and Reed, M. G., (1962) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron—II. Biotite Soil Sci. Soc. Am. Proc. 26 4145.CrossRefGoogle Scholar
Scott, A. D. and Reed, M. G., (1962) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron III. Illite Soil Sci. Soc. Am. Proc. 26 4548.CrossRefGoogle Scholar
Stubican, V. and Roy, R., (1961) A new approach to assignment of infrared absorption bands in layer structure silicates Z. Krist. 115 200214.CrossRefGoogle Scholar
Stubican, V. and Roy, R., (1961) Isomorphous substitution and infrared spectra of the layer lattice silicates Am. Mineralogist 46 3251.Google Scholar
Tomita, K. and Dozono, M., (1972) Formation of an interstratified mineral by extraction of potassium from mica with sodium tetraphenylboron Clays and Clay Minerals 20 225231.CrossRefGoogle Scholar
Tomita, K. and Sudo, T., (1968) Interstratified structure formed from a pre-heated mica by acid treatments Nature 217 10431044.CrossRefGoogle Scholar
Tomita, K. and Sudo, T., (1968) Conversion of mica into an interstratified mineral Rept. Faculty of Sci., Kagoshima Univ. 1 89119.Google Scholar
Tomita, K. and Sudo, T., (1971) Transformation of sericite into an interstratified mineral Clays and Clay Minerals 19 263270.CrossRefGoogle Scholar
Tomita, K., Yamashita, H. and Oba, N., (1969) An interstratified mineral found in altered andesite J. Japan. Assoc. Miner. Pet. Econ. Geol. 61 1 2534.CrossRefGoogle Scholar
Walker, G. F., (1951) Vermiculite and some related mixed-layer minerals X-ray Identification and Crystal Structures of the Clay Minerals 199223.Google Scholar
White, J. L., (1956) Layer charge and interlamellar lattice silicates Clays and Clay Minerals 4 133146.Google Scholar
White, J. L., (1958) Layer charge and interlamellar expansion in a muscovite Clays and Clay Minerals 5 289294.Google Scholar
Wright, A. C., Granquist, W. T. and Kennedy, J. V., (1972) Catalysis by layer lattice silicates—I. The structure and thermal modification of a synthetic ammonium dioctahedral clay J. Catalysis 25 6580.CrossRefGoogle Scholar