Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T03:20:27.206Z Has data issue: false hasContentIssue false

Assessment of Cation Binding to Clay Minerals Using Solid-State NMR

Published online by Cambridge University Press:  28 February 2024

David J. Sullivan
Affiliation:
South Dakota State University, Department of Chemistry & Biochemistry, Brookings, South Dakota 57007-0896
Jay S. Shore
Affiliation:
South Dakota State University, Department of Chemistry & Biochemistry, Brookings, South Dakota 57007-0896
James A. Rice
Affiliation:
South Dakota State University, Department of Chemistry & Biochemistry, Brookings, South Dakota 57007-0896
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © 1998, The Clay Minerals Society

References

Bank, S. Bank, J.F. and Ellis, P.D., 1989 Solid-state Cd-113 nuclear magnetic resonance study of exchanged montmorillonites J Phys Chem 93 48474855 10.1021/j100349a034.CrossRefGoogle Scholar
Bloembergen, N. Purcell, E.M. and Pound, R.V., 1948 Relaxation effects in nuclear magnetic resonance adsorption Phys Rev 73 679712 10.1103/PhysRev.73.679.CrossRefGoogle Scholar
Chu, P.J. Gerstein, B.C. Nunan, J. and Klier, K., 1987 A study by solid-state cesium-133 and proton NMR of a hydrated and dehydrated cesium mordenite J Phys Chem 91 3588 92 10.1021/j100297a025.Google Scholar
Emshmiller, M. Hahn, E.L. and Kaplan, J.D., 1960 Pulsed nuclear resonance spectroscopy Phys Rev 118 414424 10.1103/PhysRev.118.414.CrossRefGoogle Scholar
Grey, C.P. and Kumar, B.S.A., 1995 N-15/A1-27 double resonance NMR study of monomethylamine adsorbed on zeolite HY J Am Chem Soc 117 90719072 10.1021/ja00140a026.CrossRefGoogle Scholar
Grey, C.P. and Vega, A.J., 1995 Determination of the quadrupole coupling constant of the invisible aluminum spins in zeolite HY with 1H/27 Al TRAPDOR NMR J Am Chem Soc 117 82328242 10.1021/ja00136a022.CrossRefGoogle Scholar
Grim, R.E., 1953 Clay mineralogy New York McGraw Hill 10.1097/00010694-195310000-00009.CrossRefGoogle Scholar
Haber-Pohlmeier, S. and Pohlmeier, A., 1997 Kinetics and equilibrium of the ion exchange of Cd2+ at Na-montmorillonite: Analysis of heterogeneity by means of the regularization technique CONTIN J Colloid Interface Sci 188 377386 10.1006/jcis.1997.4782.CrossRefGoogle Scholar
Jarvie, T.P. Went, G.T. and Mueller, K.T., 1996 Simultaneous multiple distance measurements in peptides via solid-state NMR J Am Chem Soc 118 53305331 10.1021/ja960188f.CrossRefGoogle Scholar
Kao, H. and Grey, C.P., 1996 Characterization of the Lewis acid sites in zeolite HY with the probe molecule trimethylphos-phine, and 31P/27A1 double resonance NMR Chem Phys Lett 259 459464 10.1016/0009-2614(96)00771-3.CrossRefGoogle Scholar
Kaplan, D.E. and Hahn, E.L., 1958 Experience de double irradiation en resonance magnetique par la methode d’impulsions J Phys Radium 19 821 10.1051/jphysrad:019580019011082100.CrossRefGoogle Scholar
Kim, Y. Cygan, R.T. and Kirkpatrick, R.J., 1996 113Cs NMR and XPS investigation of cesium adsorbed on clay minerals and related phases Geochim Cosmochim Acta 60 10411052 10.1016/0016-7037(95)00452-1.CrossRefGoogle Scholar
Kim, Y. Kirkpatrick, R.J. and Cygan, R.T., 1996 113Cs NMR study of cesium on the surfaces of kaolinite and illite Geochim Cosmochim Acta 60 40594074 10.1016/S0016-7037(96)00257-8.CrossRefGoogle Scholar
Laperche, V. Lambert, J.F. Prost, R. and Fripiat, J.J., 1990 High-resolution solid-state NMR of exchangeable cations in the in-terlayer surface of a swelling mica—Na-23, Cd-111, and Cs-133 vermiculites J Phys Chem 94 88218831 10.1021/j100388a015.CrossRefGoogle Scholar
Liang, J.J. and Sherriff, B.L., 1993 Lead exchange into zeolite and clay minerals—A Si-29, Al-27, Na-23 solid-state NMR study Geochim Cosmochim Acta 57 38853894 10.1016/0016-7037(93)90088-E.Google Scholar
Luca, V. Cardile, C.M. and Meinhold, R.H., 1989 High-resolution multinuclear NMR study of cation migration in montmorillonite Clay Miner 24 115119 10.1180/claymin.1989.024.1.10.CrossRefGoogle Scholar
Mueller, K.T., 1995 Analytic solution for the time evolution of dipolar-dephasing NMR signals J Magn Res A 113 8193 10.1006/jmra.1995.1059.CrossRefGoogle Scholar
Mueller, K.T. Jarvie, T.P. Aurentz, D.J. and Roberts, B.W., 1995 The REDOR transform: Direct calculation of internuclear couplings from dipolar-dephasing NMR data Chem Phys Lett 242 535542 10.1016/0009-2614(95)00773-W.CrossRefGoogle Scholar
Schmidt-Rohr, K. and Spiess, H.W., 1994 Multidimensional solid-state NMR and polymers San Diego Academic Press Limited.Google Scholar
Tinet, D. Faugere, A.M. and Prost, R., 1991 Cd-113 NMR chemical shift tensor analysis of cadmium-exchanged clays and clay gels J Phys Chem 95 88048807 10.1021/j100175a070.CrossRefGoogle Scholar
van Eck, E.R.H. Janssen, R. Maas, W. and Veeman, W.S., 1990 A novel application of nuclear spin-echo double-resonance to aluminophosphates and aluminosilicates Chem Phys Lett 174 428432 10.1016/S0009-2614(90)87174-P.CrossRefGoogle Scholar
van Wüllen, L. Gee, B. Züchner, L. Bertmer, M. and Eckert, H., 1996 V. Physicochemical methods of glass characterization Connectivities and cation distributions in oxide glasses: New results from solid state NMR. Ber Bunsenges Phys Chem 100 15391549.Google Scholar
Weiss, C.A.J. Kirkpatrick, R.J. and Altaner, S.P., 1990 Variations in interlayer cation sites of clay minerals as studied by 133Cs MAS nuclear magnetic resonance spectroscopy Am Mineral 75 970982.Google Scholar
Weiss, C.A.J. Kirkpatrick, R.J. and Altaner, S.P., 1990 The structural environments of cations adsorbed onto clays: 133Cs variable-temperature MAS NMR spectroscopic study of hectorite Geochim Cosmochim Acta 54 16551669 10.1016/0016-7037(90)90398-5.CrossRefGoogle Scholar