Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T21:14:08.677Z Has data issue: false hasContentIssue false

Discussion of the Occurrence and Origin of Sedimentary Palygorskite-Sepiolite Deposits

Published online by Cambridge University Press:  01 July 2024

Wayne C. Isphording*
Affiliation:
Department of Geology-Geography, University of South Alabama, U.S.A.

Abstract

Marine and non-marine palygorskite-sepiolite deposits are found throughout the world and occur interbedded with chert, dolomite, limestone, phosphates and other non-detrital sedimentary rocks. The origin of these high-magnesium clays has long been attributed to either alteration of volcanic ash or the structural transformation of smectite clays. More recently, others have argued origin by direct crystallization (neo-formation). Recent laboratory studies support this latter concept, particularly in environments where the concentration of alumina is low, the silica concentration high, and the pH alkaline. Such an origin is proposed for the Georgia-Florida deposits in southeastern United States, since major obstacles exist against formation by alteration of volcanic ash or by transformation of smectites. Lateritic weathering during the Miocene would have favored direct precipitation of these clays in the shallow, marginal seas. The basinward increase in the MgO: Al2O3 ratio is further support.

Deep weathering of crystalline rocks in northern British Honduras and Guatemala would have produced similar high silica, low alumina conditions on the adjacent submerged Yucatan Platform during the late Tertiary. The seaward increase in the MgO: A12O3 ratio, the lack of associated detrital constituents, and the absence of associated smectites strongly indicate a similar origin by direct crystallization of these Yucatan palygorskite-sepiolite clays.

Some occurrences of palygorskite and sepiolite may well be related to the alteration of smectite clays or volcanic ash. However, many of the large sedimentary deposits are more probably the result of direct crystallization adjacent to areas undergoing tropical or subtropical weathering.

Résumé

Résumé

Les dépôts marins et non marins de palygorskite-sépiolite existent partout dans le monde et se présentent en mélange avec des chailles, de la dolomite, du calcaire, des phosphates et d’autres roches sédimendaires non détritiques. L’origine de ces argiles à haute teneur en magnésium a longtemps été attribuée soit à l’altération de cendres volcaniques, soit à la transformation structurale de smectites. Plus récemment d’autres auteurs ont défendu l’hypothèse d’une origine par cristallisation directe (néoformation). Des travaux de laboratoire récents confirment ce dernier concept, notamment dans le cas des environnements à concentration en alumine basse, à concentration en silice élevée et à pH alcalin. Une telle origine est proposée pour les dépôts de Georgie et Floride dans le sud-est des Etats-Unis, puisque des obstacles majeurs s’y opposent à l’altération d’une cendre volcanique ou à la transformation de smectites. Une altération latéritique pendant le miocène aurait favorisé la précipitation de ces argiles dans des mers marginales peu profondes. L’augmentation du rapport MgO: A12O3 en allant vers la cuvette est un argument supplémentaire.

L’altération profonde de roches cristallines dans le nord du Honduras britannique et au Gautemala aurait produit des conditions similaires—richesse en silice et pauvtreé en alumine—sur la plateforme voisine submergée du Yucatan pendant la fin du tertiaire. L’augmentation du rapport MgO: A12O3 en allant vers la mer, l’absence de constituants détritiques et de smectites associés indiquent avec force une origine comparable par cristallisation directe de ces palygorskites-sépiolites du Yucatan.

Certains gisements de palygorskite et de sépiolite sont sans doute reliés à l’altération de smectites ou de cendres volcaniques. Cependant, la plupart des grands dépôts sédimentaires est beaucoup plus probablement le résultat d’une cristallisation directe adjacente à des zones ayant subi une altération tropicale ou subtropicale.

Kurzreferat

Kurzreferat

Marine und nichtmarine Palygorskit-Sepiolit-Lagerstätten werden in der ganzen Welt gefunden und treten eingebettet in Quarzit, Dolomit, Kalkstein, Phosphate und andere nichtdetritische Sedimentgesteine auf. Die Entstehung dieser hochmagnesiumhaltigen Tone wurde lange entweder der Umbildung vulkanischer Aschen oder der Strukturumwandlung von Smectiten zugeschrieben. Neuerdings wurde von anderen Autoren eine Entstehung durch direkte Kristallisation (Neoformation) erörtert. Neuere Laboruntersuchungen stützen das letztgenannte Konzept besonders für Umweltbedingungen, in denen die Aluminiumkonzentration gering, die Kieselsäurekonzentration hoch ist und der pH-Wert im alkalischen Bereich liegt. Eine solche Entstehung wird für die Georgia-Florida-Lagerstätten in den südöstlichen Vereinigten Staaten vorgeschlagen, da hier einer Bildung durch Umsetzung vulkanischer Aschen oder durch Umwandlung von Smectiten größere Hindernisse entgegenstehen. Lateritische Verwitterung während des Miozäns würde in den flachen Randseen eine direkte Fällung dieser Tonminerale begünstigt haben. Der beckenwärts erfolgende Anstieg im MgO: Al2O3-Verhältnis ist eine weitere Stütze.

Tiefgründige Verwitterung kristalliner Gesteine im nördlichen Britisch-Honduras und Guatemala würden während des späten Tertiärs ähnliche kieselsäurereiche, aluminiumarme Bedingungen in der benachbarten überschwemmten Yucatan-Plattform hervorgerufen haben. Der seewärts erfolgende Anstieg im Mg0:Al203-Verhältnis, das Fehlen von Beimengungen detritischer Bestandteile und die Abwesenheit von Smectit deuten stark darauf hin, daß diese Yukatan-Palygorskit-Sepiolit Tone in ähnlicher Weise durch direkte Kristallisation entstanden sind.

Einige Vorkommen von Palygorskit und Sepiolit mögen wohl mit der Umwandlung von smectitischen und vulkanischen Aschen in Beziehung stehen, jedoch sind viele der großen sedimentären Lagerstätten mit großer Wahrscheinlichkeit das Ergebnis direkter Kristallisation in der Nachbarschaft von Gebieten, in denen tropische und subtropische Verwitterung ablief.

Резюме

Резюме

Морские и неморские отложения палыгорскита-сепиолита находят по всему свету и они встречаются залегающими между пластами кремнистого сланца, доломита, известняка, фосфора и других необломочных осадочных горных пород. Происхождение этих глин с высоким содержанием магния давно уже предписывалось или изменениям вулканического пепла или структурной трансформации смектитных глин. Недавно выдвинули мнение, что происхождение это является непосредственной кристаллизацией (новонаслоением). Современные лабораторные исследования подтверждают последнюю консепцию, особенно, если в окружающих условиях концентрация глинозема низка, а концентрация кварца высока и при этом рН щелочный. Считают, что отложения в Джорджии-Флорида в Южных Соединенных Штатах такого происхождения, так как существуют важные возражения против изменения вулканического пепла или трансформации смектитов. Латеритовое выветривание в период миоцена повело бы к непосредственному осаждению этих глин в мелководных побережных морях. Увеличение отношения МgО: Al2O3 по направлению к бассейну является добавочным подтверждением.

Глубокое выветривание кристаллических горных пород в Британских Гондурас и Гватемала создали бы такие условия высокого содержания кварца и низкого содержания глинозема на смежной погруженной платформе Юкатана во воремя позднего третичного периода. Повышение отношения МgO: Al2O3 по направлению к морю, отсутствие ассоциированных наносных компонентов и отсутствие ассоциированных смектитов явно указывают на непосредственную кристаллизацию этих юкотанских палыгорских-сепиолитных глин.

Иногда происхождение палыгорскита и сепиолита может быть связано с изменениями смектитных глин или вулканического пепла. Однако многие крупные осадочные отложения являются, наверно, результатом непосредственной кристаллизации рядом с областями подвергающихся тропическому или субтропическому выветриванию.

Type
Research Article
Copyright
Copyright © 1973 The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul-Latif, N. and Weaver, C., (1969) Kinetics of acid-dissolution of palygorskite (attapulgite) and sepiolite Clays and Clay Minerals 17 169178.CrossRefGoogle Scholar
Arnold, D., (1967) Sak Iu’um Maya culture: and its possible relation to Maya blue Urbana, Ill. Dept. of Anthropology, University of Illinois.Google Scholar
Arnold, D., (1971) Ethnomineralogy of Ticul, Yucatan potters Am. Antiquity 36 2040.CrossRefGoogle Scholar
Berry, E., (1916) The physical conditions and age indicated by the flora of the Alum Bluff Formation U.S. Geol. Survey Prof. Paper 98E 4159.Google Scholar
Berry, E., (1916) The physical conditions indicated by the flora of the Calvert Formation U.S. Geol. Survey Prof. Paper 98F 6173.Google Scholar
Berry, E., (1937) Tertiary floras of eastern North America Bot. Rev. 3 3146.Google Scholar
Bonatti, E. and Joensuu, O., (1968) Palygorskite from Atlantic deep sea sediments Am. Mineralogist 53 975983.Google Scholar
Brainerd, G. (1958) The archaeological ceramics of Yucatan: Univ. of California, Anthropological Records, 19, Berkeley and Los Angeles, 374 p.Google Scholar
Bradley, W. F., (1940) The structural scheme of attapulgite Am. Mineralogist 25 405.Google Scholar
Brauner, K. and Preisinger, A., (1956) Struktur and est-stehung des sepioliths Tschermak’s Mineral. Petrogr. Mitt. 6 120140.CrossRefGoogle Scholar
Brindley, G. W., (1959) X-ray and electron diffraction data for sepiolite Am. Mineralogist 44 495500.Google Scholar
Caillere, S., (1936) Contribution in l’etude des mineraux des serpentines Bull. Soc. Franc. Mineral. 59 163.Google Scholar
Caillere, S. and Brown, G., (1951) Sepiolite X-Ray Identification and Crystal Structures of Clay Minerals London Mineral. Soc. 224233.Google Scholar
Caillere, S. and Henin, S., (1948) Occurrences of sepiolite in the lizard serpentines Nature 63 962.Google Scholar
Caillere, S., Henin, S. and Brown, G., (1961) Palygorskite X-Ray Identification and Crystal Structures of Clay Minerals London Mineral. Soc. 343353.Google Scholar
Demangeon, P. and Salvayre, H., (1961) Sur la genese de palygorskite dans un calcaire dolomitique Bull. Soc. France. Miner. Crist. 84 201202.Google Scholar
Dorf, E., (1960) Climatic changes of the past and present Am. Scientist 48 341364.Google Scholar
Espenshade, G. and Spencer, C., (1963) Geology of phosphate deposits of northern Peninsular Florida U.S. Geol. Sur. Bull. 1118 115.Google Scholar
Fersman, A. (1913) Zapiski Rossiiskoi Acad. Nauk. (Quoted in: Izbrannye Trudy 1, 1952). Also in: Memoires de l’Academie Imperiale des Sciences de Saint Peterbourg. Classe phisicomathematique, 32, No. 2.Google Scholar
Foster, W. and Feicht, F., (1946) Mineralogy of concretions from Pittsburgh coal seam with special reference to analcite Am. Mineralogist 31 357364.Google Scholar
Gremillion, L., (1965) The origin of attapulgite in the Miocene strata of Florida and Georgia .Google Scholar
Grim, R., (1933) Petrography of the fuller’s earth deposits, Olmstead, Illinois, with a brief study of some non-Illinois earths Econ. Geology 29 344363.CrossRefGoogle Scholar
Hast, N., (1956) A reaction between silica and some magnesium compounds at room temperatures and at +37°C Arkiv Kemi 9 343360.Google Scholar
Hathaway, J. and Sachs, P., (1965) Sepiolite and clinoptilo-lite from the mid-Atlantic Ridge Am. Mineralogist 50 852867.Google Scholar
Henderson, J., Jackson, M., Syers, J., Clayton, R. and Rex, R., (1971) Cristobalite authigenic origin in relation to montmorillonite and quartz origin in bentonites Clays and Clay Minerals 19 229238.CrossRefGoogle Scholar
Heron, S. and Johnson, H., (1966) Clay mineralogy, stratigraphy and structural setting of the Hawthorn Formation, Cooswahatchee District, South Carolina Southeastern Geology 7 5163.Google Scholar
Heystek, H. and Schmidt, E., (1953) The mineralogy of the attapulgite-montmorillonite deposit in the Springbok Flats, Transvaal Trans. Geol. So. Africa 56 99115.Google Scholar
Isphording, W., (1970) Late Tertiary paleoclimate of eastern United States Am. Assoc. Petrol. Geol. Bull. 54 334343.Google Scholar
Isphording, W., (1971) Provenance and petrography of Gulf Coast Miocene sediments 15th Field Conf. Guidebook, Southeastern Geol. Soc 4355.Google Scholar
Jean, C., (1971) The neoformation of clay minerals in brackish and marine environments Clays and Clay Minerals 9 209217.CrossRefGoogle Scholar
Kerr, P., (1937) Attapulgus clay Am. Mineralogist 22 548.Google Scholar
Lapparent, J. d., (1935) An essential constituent of Fullers Earth Comptes Rendus 201 481483.Google Scholar
Lapparent, J. d., (1936) Formule et schema structural de l’attapulgite Comptes Rendus 202 17281731.Google Scholar
Lonchambon, H., (1935) Sur des constituents minéralogi-que essentials des argiles, en particular des terres à foulon Comptes Rendus 201 483485.Google Scholar
Loughnan, F., (1966) A comparative study of the Newcastle and Illawarra Coal Measure sediments of the Sydney Basin, New South Wales J. Sed. Petrol. 36 10161025.CrossRefGoogle Scholar
Mackenzie, F. and Garreis, R., (1965) Silicates: reactivity with sea water Science 150 5758.CrossRefGoogle ScholarPubMed
Mansfield, G., (1940) Clay investigations in the southern states, 1934–1935: Introduction U.S. Geol. Sur. Bull. .Google Scholar
McBride, E., Lindemann, W. and Freeman, P. (1968) Lithology and petrology of the Guedan (Catahoula) Formation in south Texas: Bur. Econ. Geol. Invest. 63, 122 p.Google Scholar
McClellan, G., (1964) Petrology of attapulgus clay in north Florida and southwest Georgia .Google Scholar
McLean, S., Allen, B. and Craig, J., (1972) The occurrence of sepiolite and attapulgite on the Southern High Plains Clays and Clay Minerals 20 143149.CrossRefGoogle Scholar
Midgley, H., (1959) A sepiolite from Mullion, Cornwall Clay Minerals Bull. 4 8893.CrossRefGoogle Scholar
Millot, G., (1957) Des cycles sedimentaires et cletrois modes de sedimentation argilleuse Comptes Rendus 244 25362539.Google Scholar
Millot, G., (1962) Crystalline neoformation of clays and silica Proc. Symp. Basic Sci. France-U.S. 180191.Google Scholar
Millot, G., Radier, H. and Bonifas, M., (1957) La sedimentation argileuse a attapulgite et montmorillonite Bull. Soc. France 6 425433.CrossRefGoogle Scholar
Mumpton, F. and Roy, R., (1958) New data on sepiolite and attapulgite Clays and Clay Minerals 5 136143.Google Scholar
Nagy, G. and Bradley, W. F., (1955) The structural scheme of sepiolite Am. Mineralogist 40 885892.Google Scholar
Osthaus, B., (1956) Kinetic studies on montmorillonite and nontronite by the acid-dissolution technique Clays and Clay Minerals 4 301321.Google Scholar
Ovcharenko, F., (1964) Editor The Colloid Chemistry of Palygorskite .Google Scholar
Parry, W. and Reeves, C., (1968) Sepiolite from pluvial Mound Lake, Lynn and Terry Counties, Texas Am. Mineralogist 53 884993.Google Scholar
Reynolds, W., (1970) Mineralogy and stratigraphy of lower Tertiary clays and claystones of Alabama J. Sed. Petrology 54 829838.Google Scholar
Rogers, L., Martin, A. and Norrish, K., (1954) Palygorskite from Queensland Miner. Mag. 30 534540.Google Scholar
Schultz, L., Shepard, A., Blackmon, P. and Starkey, H., (1971) Mixed-layer kaolinite-montmorillonite from the Yucatan Peninsula, Mexico Clays and Clay Minerals 19 137150.CrossRefGoogle Scholar
Serdyuchenko, D., (1949) Sepiolite from northern Caucasus (in Russian) Dokl. Acad. Nauk. SSSR 69 577580.Google Scholar
Shabayeva, Y., (1962) Palygorskite from the Paleogene beds of southern Turkmenia Trans. Dokl. Acad. Sci. USSR, Am. Geol. Inst. 143 9497.Google Scholar
Siffert, B., (1962) Quelques reations de la silice in solution: La formation des argiles Mem. Ser. Carte Geol. Alsace-Lorraine 21 116.Google Scholar
Siffert, B. and Wey, R., (1962) Synthese d’une sepiolite à temperature ordinaire Comptes Rendus 254 14601462.Google Scholar
Slansky, M., Camez, T. and Millot, G., (1959) Sedimentation argileuse et phosphatée au Dahomey Bull. Soc. Geol. Fr. 1 150155.CrossRefGoogle Scholar
Swineford, A., Frye, J. and Leonard, A., (1955) Petrography of the late Tertiary volcanic ash falls in the Central Great Plains J. Sed. Petrology 25 243261.CrossRefGoogle Scholar
Teodorovitch, G., (1961) Authigenic Minerals in Sedimentary Rocks New York Consultants Bureau.CrossRefGoogle Scholar
Wise, W., Buie, B. and Weaver, F., (1972) Origin of deep sea cristobalite chert Eclogae Geol. Helv. 65 157163.Google Scholar
Wollast, R., Mackenzie, F. and Bricker, O., (1968) Experimental precipitation and genesis of sepiolite at earth-surface conditions Am. Mineralogist 53 16451661.Google Scholar
Yusupova, S., (1955) Sepiolite from Darvaz (in Russian) Uchenye Zapiski Tadshik Univ. 6 3540.Google Scholar
Zayagin, B., (1967) Electron Diffraction Analysis of Clay Mineral Structures New York Plenum Press.CrossRefGoogle Scholar