Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T04:57:44.988Z Has data issue: false hasContentIssue false

The effect of amino acids on the dissolution rates of amorphous silica in near-neutral solution

Published online by Cambridge University Press:  01 January 2024

Motoharu Kawano*
Affiliation:
Department of Earth and Environmental Sciences, Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
Sumine Obokata
Affiliation:
The Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
*
*E-mail address of corresponding author: kawano@sci.kagoshima-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Amino acids are ubiquitous in the Earth’s surface environments as reactive biological molecules produced by every living thing including bacteria. To evaluate the effects of amino acids on mineral dissolution and to reveal the mechanism by which they interact with the mineral surface, we performed dissolution experiments of X-ray amorphous silica in solution containing 0.1 mmol Na with 10.0 mmol amino acids such as cysteine, asparagine, serine, tryptophan, alanine, threonine, histidine, lysine and arginine in near-neutral solutions. Dissolution experiments in solutions of 0.1, 1.0 and 10.0 mmol NaCl without amino acids were also conducted as amino acid-free controls. The results of this study indicate that basic amino acids such as histidine, lysine and arginine can interact more strongly with the negatively charged surface of amorphous silica than other non-basic amino acids due to their greater dissociation, thus forming cationic species. This electrostatical interaction enhanced dissolution rates of amorphous silica by approximately one order of magnitude compared with amino acid-free controls. In contrast, no significant effect on the dissolution rates of amorphous silica was observed in solutions containing cysteine, asparagine, serine, tryptophan, alanine and threonine because of lesser interaction with the surface of amorphous silica.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Abendroth, R.P., (1970) Behavior of a pyrogenic silica in simple electrolytes Journal of Colloid and Interface Science 34 591596 10.1016/0021-9797(70)90223-7.CrossRefGoogle Scholar
Amelung, W. Zhang, X. and Flach, K.W., (2006) Amino acids in grassland soils: Climatic effects on concentrations and chirality Geoderma 130 207217 10.1016/j.geoderma.2005.01.017.CrossRefGoogle Scholar
Andersson, E. Simoneit, B.R.T. and Holm, N.G., (2000) Amino acid abundances and stereochemistry in hydrothermally altered sediments from the Juan de Fuca Ridge, northeastern Pacific Ocean Applied Geochemistry 15 11691190 10.1016/S0883-2927(99)00110-9.CrossRefGoogle Scholar
Apruzzese, F. Bottari, E. and Festa, M.R., (2002) Protonation equilibria and solubility of l-cystine Talanta 56 459469 10.1016/S0039-9140(01)00570-7.CrossRefGoogle ScholarPubMed
Barker, W.W. Welch, S.A. Banfield, J.F., Banfield, J.F. and Nealson, K.H., (1997) Biogeochemical weathering of silicate minerals Geomicrobiology: Interactions between Microbes and Minerals Washington D.C Mineralogical Society of America 391428 10.1515/9781501509247-014.CrossRefGoogle Scholar
Bennett, P.C. Melcer, M.E. Siegel, D.I. and Hassett, J.P., (1988) The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C Geochimica et Cosmochimica Acta 52 15211530 10.1016/0016-7037(88)90222-0.CrossRefGoogle Scholar
Berthrong, S.T. and Finzi, A.C., (2006) Amino acid cycling in three cold-temperate forests of the northeastern USA Soil Biology and Biochemistry 38 861869 10.1016/j.soilbio.2005.08.002.CrossRefGoogle Scholar
Brady, P.V. and Walther, J.V., (1990) Kinetics of quartz dissolution at low temperatures Chemical Geology 82 253264 10.1016/0009-2541(90)90084-K.CrossRefGoogle Scholar
Burdige, D.J. and Martens, C.S., (1988) Biogeochemical cycling in an organic-rich coastal marine basin: 10. The role of amino acids in sedimentary carbon and nitrogen cycling Geochimica et Cosmochimica Acta 52 15711584 10.1016/0016-7037(88)90226-8.CrossRefGoogle Scholar
Burdige, D.J. and Martens, C.S., (1990) Biogeochemical cycling in an organic-rich coastal marine basin: 11. The sedimentary cycling of dissolved, free amino acids Geochimica et Cosmochimica Acta 54 30333052 10.1016/0016-7037(90)90120-A.CrossRefGoogle Scholar
Carter, P.W., (1978) Adsorption of amino acids-containing organic matter by calcite and quartz Geochimica et Cosmochimica Acta 42 12391242 10.1016/0016-7037(78)90117-5.CrossRefGoogle Scholar
Chen, J. Li, Y. Yin, K. and Jin, H., (2004) Amino acids in the Pearl River Estuary and adjacent waters: origins, transformation and degradation Continental Shelf Research 24 18771894 10.1016/j.csr.2004.06.013.CrossRefGoogle Scholar
Churchill, H. Teng, H. and Mazen, R.M., (2004) Correlation of pH-dependent surface interaction forces to amino acid adsorption: Implications for the origin of life American Mineralogist 89 10481055 10.2138/am-2004-0716.CrossRefGoogle Scholar
Dallavalle, F. Folesani, G. Sabatini, A. Tegoni, M. and Vacca, A., (2001) Formation equilibria of ternary complexes of copper(II) with (S)-tryptophanhydroxamic acid and both D- and L-amino acids in aqueous solution Polyhedron 18 103109 10.1016/S0277-5387(00)00597-0.CrossRefGoogle Scholar
Dayde, S. Champmartin, D. Rubini, P. and Berthon, G., (2002) Aluminium speciation studies in biological fluids. Part 8. A quantitative investigation of Al(III)- amino acid complex equilibria and assessment of their potential implications for aluminium metabolism and toxicity Inorganica Chimica Acta 339 513524 10.1016/S0020-1693(02)01046-0.CrossRefGoogle Scholar
Dawson, R.C. Elliott, D.C. Elliott, W.H. and Jones, K.M., (1986) Data for Biochemical Research, third edition Oxford, UK Clarendon Press 580 pp.Google Scholar
Dittmar, T. and Kattner, G., (2003) The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review Marine Chemistry 83 103120 10.1016/S0304-4203(03)00105-1.CrossRefGoogle Scholar
Dittmar, T. Fitznar, H.P. and Kattner, G., (2001) Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from D- and L- amino acids Geochimica et Cosmochimica Acta 65 41034114 10.1016/S0016-7037(01)00688-3.CrossRefGoogle Scholar
Dove, P.M., (1999) The dissolution kinetics of quartz in aqueous mixed cation solutions Geochimica et Cosmochimica Acta 63 37153727 10.1016/S0016-7037(99)00218-5.CrossRefGoogle Scholar
Dove, P.M. and Crerar, D.A., (1990) Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor Geochimica et Cosmochimica Acta 54 955959 10.1016/0016-7037(90)90431-J.CrossRefGoogle Scholar
Dove, P.M. and Elston, S.F., (1992) Dissolution kinetics of quartz in sodium chloride solutions: Analysis of existing data and a rate model for 25°C Geochimica et Cosmochimica Acta 56 41474156 10.1016/0016-7037(92)90257-J.CrossRefGoogle Scholar
Dove, P.M. and Nix, C.J., (1997) The influence of the alkaline earth cations, magnesium, calcium and barium on the dissolution kinetics of quartz Geochimica et Cosmochimica Acta 61 33293340 10.1016/S0016-7037(97)00217-2.CrossRefGoogle Scholar
Dove, P.M. Rimstidt, J.D., Heaney, P.J. and Prewitt, C.T., (1994) Silica-water interface Silica, Physical Behavior, Geochemistry and Materials Applications Washington DC Mineralogical Society of America 259308 10.1515/9781501509698-013.CrossRefGoogle Scholar
Drever, J.I. and Stillings, L.L., (1997) The role of organic acids in mineral weathering Colloids and Surfaces, A: Physicochemical and Engineering Aspects 120 167181 10.1016/S0927-7757(96)03720-X.CrossRefGoogle Scholar
Gupta, L.P. and Kawahata, H., (2003) Amino acids and hexosamines in the Hess Rise core during the past 220,000 years Quaternary Research 60 394403 10.1016/j.yqres.2003.07.012.CrossRefGoogle Scholar
Icenhower, J.P. and Dove, P.M., (2000) The dissolution kinetics of amorphous silica into sodium chloride solutions: Effects of temperature and ionic strength Geochimica et Cosmochimica Acta 64 41934203 10.1016/S0016-7037(00)00487-7.CrossRefGoogle Scholar
Ingalls, A.E. Lee, C. Wakeham, S.G. and Hedges, J.I., (2003) The role of biominerals in the sinking flux and preservation of amino acids in the Southern Ocean along 170°W Deep-Sea Research II 50 713738 10.1016/S0967-0645(02)00592-1.CrossRefGoogle Scholar
Jennerjahn, T.C. and Ittekkot, V., (1999) Changes in organic matter from surface waters to continental slope sediments off the Sãn Francisco River, eastern Brazil Marine Geology 161 129140 10.1016/S0025-3227(99)00045-6.CrossRefGoogle Scholar
Köseoglu, F. Kiliç, E. and Dogan, A., (2000) Studies on the protonation constants and solvation of α-amino acids in dioxan-water mixtures Analytical Biochemistry 277 243246 10.1006/abio.1999.4371.CrossRefGoogle ScholarPubMed
Ladd, J.N. and Butler, J.H.A., (1972) Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates Soil Biology and Biochemistry 4 1930 10.1016/0038-0717(72)90038-7.CrossRefGoogle Scholar
Lipson, A.A. Schmidt, S.K. and Monson, R.K., (1999) Links between microbial population dynamics and nitrogen availability in an alpine ecosystem Ecology 80 16231631 10.1890/0012-9658(1999)080[1623:LBMPDA]2.0.CO;2.CrossRefGoogle Scholar
Lipson, D.A. Raab, T.K. Schmidt, S.K. and Monson, R.K., (2001) An empirical model of amino acid transformations in an alpine soil Soil Biology and Biochemistry 33 189198 10.1016/S0038-0717(00)00128-0.CrossRefGoogle Scholar
Müller, B., (1996) ChemEQL V.2.0. A program to calculate chemical speciation and chemical equilibria Dübendorf, Switzerland Eidgenössische Anstalt für Wasserversorgung.Google Scholar
Stefano, C.D. Foti, C. Gianguzza, A. and Sammartano, S., (2000) The interaction of amino acids with the major constituents of natural waters at different ionic strengths Marine Chemistry 72 6176 10.1016/S0304-4203(00)00067-0.CrossRefGoogle Scholar
Stumm, W. and Morgan, J.J., (1996) Aquatic Chemistry, Chemical Equilibria and Rates in Natural Water New York Wiley-International Science & Technology 1022 pp.Google Scholar
Szajdak, L. Jezierski, A. and Cabrera, M.L., (2003) Impact of conventional and no-tillage management on soil amino acids, stable and transient radicals and properties of humic and fulvic acids Organic Geochemistry 34 693700 10.1016/S0146-6380(03)00024-X.CrossRefGoogle Scholar
Tadros, T.h.F. and Lyklema, J., (1969) The electrical double layer on silica in the presence of bivalent counter ions Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 22 17 10.1016/S0022-0728(69)80140-3.CrossRefGoogle Scholar
Takano, Y. Sato, R. Kaneko, T. Kobayashi, K. and Marumo, K., (2003) Biological origin for amino acids in a deep subterranean hydrothermal vent, Toyoha mine, Hokkaido, Japan Organic Geochemistry 34 14911496 10.1016/S0146-6380(03)00175-X.CrossRefGoogle Scholar
Trubetskaya, O.E. Reznikova, O.I. Afanas’eva, G.V. Markova, L.F. and Trubetskoj, O.A., (1998) Amino acid distribution in soil humic acids fractionated by tandem size exclusion chromatography Polyacrylamide gel electrophoresis Environment International 24 573581 10.1016/S0160-4120(98)00036-1.CrossRefGoogle Scholar
Tryfona, T. and Bustard, M.T., (2005) Fermentative production of lysine by Corynebacterium glutamicum: transmembrane transport and metabolic flux analysis Process Biochemistry 40 499508 10.1016/j.procbio.2004.01.037.CrossRefGoogle Scholar
Umerie, S.C. Ekwealor, I.A. and Nwagbo, I.O., (2000) Lysine production by Bacillus laterosporus from various carbohydrates and seed meals Bioresource Technology 75 249252 10.1016/S0960-8524(00)00052-3.CrossRefGoogle Scholar
Vandevivere, P. Welch, S.A. Ullmann, W.J. and Kirchmann, D.L., (1994) Enhanced dissolution of silicate minerals by bacteria at near-neutral pH FEMS Microbiology Ecology 27 241251.Google ScholarPubMed
Vlasova, N.N. and Golovkova, L.P., (2004) The adsorption of amino acids on the surface of highly dispersed silica Colloid Journal 66 657662 10.1007/s10595-005-0042-3.CrossRefGoogle Scholar
Welch, S.A. and Ullman, W.J., (1993) The effect of organic acids on plagioclase dissolution rates and stoichiometry Geochimica et Cosmochimica Acta 57 27252736 10.1016/0016-7037(93)90386-B.CrossRefGoogle Scholar
Welch, S.A. and Ullman, W.J., (1999) The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5° and 35°C Geochimica et Cosmochimica Acta 63 32473259 10.1016/S0016-7037(99)00248-3.CrossRefGoogle Scholar
Welch, S.A. and Vandevivere, P., (1994) Effects of microbial and other naturally occurring polymers on mineral dissolution Geomicrobiology Journal 12 227238 10.1080/01490459409377991.CrossRefGoogle Scholar
Welch, S.A. Barker, W.W. and Banfield, J.F., (1999) Microbial extracellular polysaccharides and plagioclase dissolution Geochimica et Cosmochimica Acta 63 14051419 10.1016/S0016-7037(99)00031-9.CrossRefGoogle Scholar