Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T23:00:51.839Z Has data issue: false hasContentIssue false

Effects of Some Water Repellents on the Structure and Water Sorption of Smectite

Published online by Cambridge University Press:  01 January 2024

Sae Jung Chang*
Affiliation:
School of Earth and Environmental Sciences, Seoul National University Seoul, Seoul 151-742, South Korea
Soo Jin Kim
Affiliation:
School of Earth and Environmental Sciences, Seoul National University Seoul, Seoul 151-742, South Korea
Kideok Kwon*
Affiliation:
School of Earth and Environmental Sciences, Seoul National University Seoul, Seoul 151-742, South Korea
*
*E-mail address of corresponding author: saejung@snu.ac.kr
Present address: Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Waterproofing treatment is important for the preservation of smectite-rich rocks because of their shrinking and swelling properties. The effects of water repellents on the smectite structure and the water sorption of untreated and treated smectites were studied using X-ray diffraction. The hydrophobic Wacker BS 290 (around 100% silane/siloxane) does not prevent water from sorbing on the interlayer surface of smectite because the hydrophobic silane/siloxane is not intercalated into the interlayer space, but adsorbed onto the external surface of smectite. However, the hydrophilic Wacker BS 1001 (water-soluble emulsified silane/siloxane) prevents water from sorbing onto the interlayer surface beyond 33.3 wt.% because the hydrophobic part of the intercalated surfactant has a poor affinity for water. These results imply that water repellent containing a surfactant is suitable for smectite-rich rocks, but the expansion of smectite by intercalation of the surfactant is likely to influence volume change in smectite-rich rocks. This study notes that smectite within a rock can be one of the most important factors influencing the effectiveness of waterproof treatment. This study proposes that an intensive preliminary examination should be performed before applying water repellents to rocks, and furthermore, encourages development of new chemical reagents suitable for protecting smectite-rich rocks from moisture.

Type
Research Article
Copyright
Copyright © 2004, The Clay Minerals Society

References

Alexandre, M. and Dubois, P., (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials Materials Science and Engineering 28 163 10.1016/S0927-796X(00)00012-7.CrossRefGoogle Scholar
Charola, A.E. and Delgado Rodrigues, J., (1996) Discussions and conclusions of the round-table on water-repellent treatments Science and Technology for Cultural Heritage 5 111114.Google Scholar
Delgado Rodrigues, J. and Charola, A.E., (1996) General report on water repellents Science and Technology for Cultural Heritage 5 93103.Google Scholar
González, R.F. de Azcona, M.C.L. Martín, F.M. de Buergo Ballester, M.A. Blanco, J.R. and Fassina, V., (2000) A comparative study of the efficiency of siloxanes, methacrylates and microwaxes-based treatments applied to the stone materials of the Royal Palace of Madrid, Spain Proceedings of the 9th International Congress on Deterioration and Conservation of Stone Amsterdam Elsevier 235243 Vol. 2.Google Scholar
Helmi, F.M. and Fassina, V., (2000) Geoegyptology of Al-Muzawaka Tombs, Dakhla Oases, Egypt Proceedings of the 9th International Congress on Deterioration and Conservation of Stone Amsterdam Elsevier 99107 10.1016/B978-044450517-0/50090-8 Vol. 1.CrossRefGoogle Scholar
Horie, C.V., (1987) Materials for Conservation: Organic Consolidants, Adhesives and Coatings Oxford, UK Architectural Press 281 pp.Google Scholar
Kim, S.J. Lee, J.H. Noh, J.H. Ahn, J.H. Choi, J.B. Cho, H.G. Choi, H. Yu, J.-Y. Jeong, G.Y. and Kim, K., (2000) Deterioration of the Haenam Dinosaur Tracksites and their Preservation Scheme Korea Haenam County 271 pp. (in Korean).Google Scholar
LeBaron, P.C. Wang, Z. and Pinnavaia, T.J., (1999) Polymer-layered silicate nanocomposites: an overview Applied Clay Science 15 1129 10.1016/S0169-1317(99)00017-4.CrossRefGoogle Scholar
Lee, S.Y. and Kim, S.J., (2002) Delamination behavior of silicate layers by adsorption of cationic surfactants Journal of Colloid and Interface Science 248 231238 10.1006/jcis.2002.8222.CrossRefGoogle ScholarPubMed
Lee, S.Y. and Kim, S.J., (2002) Transmission electron microscopy of hexadecyltrimethylammonium-exchanged smectite Clay Minerals 37 465471 10.1180/0009855023730044.CrossRefGoogle Scholar
McBride, M.B., (1994) Environmental Chemistry of Soils New York Oxford University Press 406 pp.Google Scholar
Newey, C. Boff, R. Daniels, V. Pascoe, M. and Tennant, N., (1992) Science for Conservators, Vol. 3: Adhesives and Coatings London Museums and Galleries Commission and Routledge 140 pp.Google Scholar
Snethlage, R., (1984) Steinkonservierung mit einem Beitrag von Hannelore Marschner, Forschungsprogramm des Zentrallabors für Denkmalpflege 1979–1983, Arbeitsheet 22 München Bayerisches Landesamt für Denkmalpflege 203 pp. (in German).Google Scholar
Snethlage, R. Wendler, E. Klemm, D.D. and Snethlage, R., (1995) Tenside im Gesteinsschutz — bisherige Resultate mit einem neuen Konzept zur Erhaltung von Denkmälern aus Naturstein Natursteinkonservierung in der Denkmalpflege München Bayerisches Landesamt für Denkmalpflege 127146 364 pp. (in German, with English abstract).Google Scholar
Theng, B.K.G., (1974) The Chemistry of Clay-Organic Reactions London Adam Hilger 343 pp.Google Scholar
Van Olphen, H., (1991) An Introduction to Clay Colloid Chemistry Germany Krieger 318 pp.Google Scholar
GmbH, Wacker-Chemie (2001a) Safety data sheet (91/155/EEC) of WACKER BS 290 (Material: 60006503), Version 1.4 (REG_EUROPE). Wacker-Chemie GmbH, 6 pp.Google Scholar
GmbH, Wacker-Chemie (2001b) Safety data sheet (91/155/EEC) of WACKER BS 1001 (Material: 60010351), Version 1.3 (REG_EUROPE). Wacker-Chemie GmbH, 5 pp.Google Scholar
Weber, H. and Zinsmeister, K., (1991) Conservation of Natural Stone: Guidelines to Consolidation, Restoration and Preservation Ehningen, Germany Expert Verlag 168 pp.Google Scholar
Wendler, E. Sattler, L. Zimmermann, P. Klemm, D.D. Snethlage, R., Delgado Rodrigues, J. Henriques, F. and Telmo Jeremias, F., (1992) Protective treatment of natural stone. Requirements and limitations with respect to the state of damage Proceedings of the 7th International Congress on Deterioration and Conservation of Stone Lisbon, Portugal Laboratório Nacional de Engenheria Civil 11031112.Google Scholar
Wüst, R.A.J. and McLane, J., (2000) Rock deterioration in the Royal Tomb of Seti I, Valley of the Kings, Luxor, Egypt Engineering Geology 58 163190 10.1016/S0013-7952(00)00057-0.CrossRefGoogle Scholar