Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T00:47:26.725Z Has data issue: false hasContentIssue false

Evidence for Low-Grade Metamorphism, Hydrothermal Alteration, and Diagenesis on Mars from Phyllosilicate Mineral Assemblages

Published online by Cambridge University Press:  01 January 2024

Bethany L. Ehlmann*
Affiliation:
Institut d’Astrophysique Spatiale, Université Paris-Sud 11, Orsay, 91405, France Department of Geological Sciences, Brown University, Providence, Rhode Island, 02912 USA
John F. Mustard
Affiliation:
Department of Geological Sciences, Brown University, Providence, Rhode Island, 02912 USA
Roger N. Clark
Affiliation:
US Geological Survey, Denver, Colorado, 80225 USA
Gregg A. Swayze
Affiliation:
US Geological Survey, Denver, Colorado, 80225 USA
Scott L. Murchie
Affiliation:
Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, 20723 USA
*
* E-mail address of corresponding author: ehlmann@gps.caltech.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The enhanced spatial and spectral resolution provided by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter (MRO) has led to the discovery of numerous hydrated silicate minerals on Mars, particularly in the ancient, cratered crust comprising the southern highlands. Phases recently identified using visible/near-infrared spectra include: smectite, chlorite, prehnite, high-charge phyllosilicates (illite or muscovite), the zeolite analcime, opaline silica, and serpentine. Some mineral assemblages represent the products of aqueous alteration at elevated temperatures. Geologic occurrences of these mineral assemblages are described using examples from west of the Isidis basin near the Nili Fossae and with reference to differences in implied temperature, fluid composition, and starting materials during alteration. The alteration minerals are not distributed homogeneously. Rather, certain craters host distinctive alteration assemblages: (1) prehnite-chloritesilica, (2) analcime-silica-Fe,Mg-smectite-chlorite, (3) chlorite-illite (muscovite), and (4) serpentine, which furthermore has been found in bedrock units. These assemblages contrast with the prevalence of solely Fe,Mg-smectites in most phyllosilicate-bearing terrains on Mars, and they represent materials altered at depth then exposed by cratering. Of the minerals found to date, prehnite provides the clearest evidence for subsurface, hydrothermal/metamorphic alteration, as it forms only under highly restricted conditions (T = 200–400°C). Multiple mechanisms exist for forming the other individual minerals; however, the most likely formation mechanisms for the characteristic mineralogic assemblages observed are, for (1) and (2), low-grade metamorphism or hydrothermal (<400°C) circulation of fluids in basalt; for (3), transformation of trioctahedral smectites to chlorite and dioctahedral smectites to illite during diagenesis; and for (4), low-grade metamorphism or hydrothermal (<400°C) circulation of fluids in ultramafic rocks. Evidence for high-grade metamorphism at elevated pressures or temperatures >400°C has not been found.

Type
Article
Copyright
Copyright © Clay Minerals Society 2011

References

Abramov, O. and Kring, D.A., 2005 Impact-induced hydrothermal activity on early Mars Journal of Geophysical Research 110 E12S09.CrossRefGoogle Scholar
Ahn, J.H. and Peacor, D.R., 1985 Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments Clays and Clay Minerals 33 228237.CrossRefGoogle Scholar
Allen, C.C. Gooding, J.L. and Keil, K., 1982 Hydrothermally altered impact melt rock and breccia: Contributions to the soil of Mars Journal of Geophysical Research 87B12 10,08310,101.CrossRefGoogle Scholar
Andrews-Hanna, J.C. Phillips, R.J. and Zuber, M.T., 2007 Meridiani Planum and the global hydrology of Mars Nature 446 163166.CrossRefGoogle ScholarPubMed
Arkai, P. Sassi, F.P. and Desmons, J., 2003 A systematic nomenclature for metamorphic rocks. 5. Very low- to low-grade metamorphic rocks Recommendations by the IUGS Subcommission on the systematics of metamorphic rocks.Google Scholar
Barnes, I. and O’Neil, J.R., 1969 The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, Western United States Geological Society of America Bulletin 80 19471960.CrossRefGoogle Scholar
Barnhart, C.J. and Nimmo, F., 2011 Role of impact excavation in distributing clays over Noachian surfaces Journal of Geophysical Research 116 E01009.CrossRefGoogle Scholar
Barnhart, C.J. Nimmo, F. and Travis, B.J., 2010 Martian post-impact hydrothermal systems incorporating freezing Icarus 208 101117.CrossRefGoogle Scholar
Bibring, J.-P. Langevin, Y. Gendrin, A. Gondet, B. Poulet, F. Berthe, M. Soufflot, A. Arvidson, R. Mangold, N. Mustard, J. and Drossart, P. OMEGA team, 2005 Mars surface diversity as revealed by the OMEGA/Mars Express Observations Science 307 15761581.CrossRefGoogle ScholarPubMed
Bibring, J.-P. Langevin, Y. Mustard, J. Poulet, F. Arvidson, R. Gendrin, A. Gondet, B. Mangold, N. Pinet, P. and Forget, F. OMEGA team, 2006 Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data Science 312 400404.CrossRefGoogle ScholarPubMed
Bishop, J. Pieters, C. and Edwards, J.O., 1994 Infrared spectroscopic analyses on the nature of water in montmorillonite Clays and Clay Minerals 42 702716.CrossRefGoogle Scholar
Bishop, J. Madejová, J. Komadel, P. and Froschl, H., 2002 The influence of structural Fe, Al, and Mg on the infrared OH bands in spectra of dioctahedral smectites Clay Minerals 37 607616.CrossRefGoogle Scholar
Bishop, J.L. Murad, E. and Dyar, M.D., 2002 The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy Clay Minerals 37 617628.CrossRefGoogle Scholar
Bishop, J.L. Noe Dobrea, E.Z. McKeown, N.K. Parente, M. Ehlmann, B. Michalski, J. Milliken, R.E. Poulet, F. Swayze, G. Mustard, J. Murchie, S. and Bibring, J.-P., 2008 Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars Science 321 830833.CrossRefGoogle ScholarPubMed
Brown, A. Walter, M.R. and Cudahy, T.J., 2005 Hyperspectral imaging spectroscopy of a Mars analogue environment at the North Pole Dome, Pilbara Craton, Western Australia Australian Journal of Earth Sciences 52 33533364.CrossRefGoogle Scholar
Buczkowski, D.L. Murchie, S. Clark, R. Seelos, K. Seelos, F. Malaret, E. and Hash, C., 2010 Investigation of an Argyre basin ring structure using Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars Journal of Geophysical Research 115 E12011.CrossRefGoogle Scholar
Cann, J.R., Harrison, C.G.A. and Hays, D.E., 1979 Metamorphism in the ocean floor Deep Sea Drilling Results in the Atlantic Ocean: Ocean Crust, 2nd Ewing Symposium Washington, D.C. American Geophysical Union 230238.CrossRefGoogle Scholar
Chen, C.H. Chu, H.T. Liou, J.G. and Ernst, W.G., 1983 Explanatory notes for the metamorphic facies map of Taiwan Special Publication of the Central Geological Survey 2 132.Google Scholar
Clark, R.N. and Rencz, A.N., 1999 Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences New York John Wiley and Sons 358.Google Scholar
Clark, R.N. King, T.V.V. Klejwa, M. Swayze, G.A. and Vergo, N., 1990 High spectral resolution reflectance spectroscopy of minerals Journal of Geophysical Research 95 12,65312,680.CrossRefGoogle Scholar
Clark, R.N. Swayze, G.A. Livo, K.E. Kokaly, R.F. Sutley, S.J. Dalton, J.B. McDougal, R.R. and Gent, C.A., 2003 Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems Journal of Geophysical Research 108 E12 5131.CrossRefGoogle Scholar
Clark, R.N. Swayze, G.A. Wise, R. Livo, K.E. Hoefen, T.M. Kokaly, R.F. and Sutley, S.J., 2007 USGS Digital Spectral Library splib06a U.S. Geological Survey Data 231.CrossRefGoogle Scholar
2008 Eos Transaction of the American Geophysical Union 89 53.Google Scholar
Cloutis, E.A. Asher, P.M. and Mertzman, S.A., 2002 Spectral reflectance properties of zeolites and remote sensing implications Journal of Geophysical Research 107 E9 5067.CrossRefGoogle Scholar
Coombs, D.S. Ellis, A.J. Fyfe, W.S. and Taylor, A.M., 1959 The zeolite facies, with comments on the interpretation of hydrothermal syntheses Geochimica et Cosmochimica Acta 17 53107.CrossRefGoogle Scholar
Deer, W.A. Howie, R.A. and Zussman, J., 1997 Rock Forming Minerals, vol 2: Double Chain Silicates 2nd edition London The Geological Society 764.Google Scholar
Deer, W.A. Howie, R.A. and Zussman, J., 2009 Rock Forming Minerals, vol 3B: Layered Silicates Excluding Micas and Clay Minerals 2nd edition London The Geological Society 320.Google Scholar
Eberl, D.D. Velde, B. and McCormick, T., 1993 Synthesis of illite-smectite from smectite at Earth surface temperatures and high pH Clay Minerals 28 4960.CrossRefGoogle Scholar
Ehlmann, B.L. 2008 et al. , Orbital identification of carbonate-bearing rocks on Mars Science 322 18281832.CrossRefGoogle ScholarPubMed
Ehlmann, B.L. Mustard, J. Swayze, G. Clark, R. Bishop, J. Poulet, F. Des Marias, D. Roach, L. Milliken, R. Wray, J. Barnouin-Jha, O. and Murchie, S., 2009 Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration Journal of Geophysical Research 114 E00D08.CrossRefGoogle Scholar
Ehlmann, B.L. Mustard, J.F. Bish, D.L. and Poulet, F., 2010 How much clay is on Mars? Lessons from visible/near-infrared (VNIR) and XRD study of hydrated silicate mineral assemblages in altered basalts from Iceland.Google Scholar
Ehlmann, B.L. Mustard, J.F. and Murchie, S.L., 2010 Geologic setting of serpentine-bearing rocks on Mars Geophysical Research Letters 37 L06201.CrossRefGoogle Scholar
Eugster, H.P., 1980 Geochemistry of evaporitic lacustrine deposits Annual Reviews of Earth and Planetary Science 8 3563.CrossRefGoogle Scholar
Evans, B.W. and Ernst, W.G., 2004 The serpentine multisystem revisited Serpentine and Serpentinites Columbia, Maryland Geological Society of America 532.Google Scholar
Farmer, J., 1996 Hydrothermal systems on Mars: An assessment of present evidence Evolution of Hydrothermal Ecosystems on Earth (and Mars?) New York John Wiley 273299.Google Scholar
Fassett, C.I. and Head, J.W., 2008 Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology Icarus 198 3756.CrossRefGoogle Scholar
Fleet, M.E. and Howie, R.A., 2006 Rock Forming Minerals, vol. 3A: Micas London Geological Society 780.Google Scholar
Fraeman, A.A., Mustard, J., Ehlmann, B., Roach, L., Milliken, R., and Murchie, S. (2009) Evaluating models of crustal cooling using CRISM observations of impact craters in Terra Tyrrhena and Noachis Terra. Lunar and Planetary Science Conference, 40, abstract 2320.Google Scholar
Frey, M. and Robinson, D., 1999 Low-Grade Metamorphism Oxford, UK Blackwell Science 313.Google Scholar
Frost, B.R. and Beard, J.S., 2007 On silica activity and serpentinization Journal of Petrology. 48 13511368.CrossRefGoogle Scholar
Gaffey, S.J., 1987 Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 um): anhydrous carbonate minerals Journal of Geophysical Research 92 14291440.CrossRefGoogle Scholar
Gendrin, A. Mangold, N. Bibring, J.-P. Langevin, Y. Gondet, B. Poulet, F. Bonello, G. Quantin, C. Mustard, J. Arvidson, R. and LeMouelic, S., 2005 Sulfates in Martian layered terrains: the OMEGA/Mars Express View Science 307 15871591.CrossRefGoogle ScholarPubMed
Gooding, J.L., 1992 Soil mineralogy and chemistry on Mars: possible clues from salts and clays in SNC meteorites Icarus 991 2841.CrossRefGoogle Scholar
Griffith, L.L. and Shock, E.L., 1997 Hydrothermal hydration of Martian crust: Illustration via geochemical model calculations Journal of Geophysical Research 102 E4 91359143.CrossRefGoogle ScholarPubMed
Gulick, V.C. and Baker, V.R., 1990 Origins and evolution of valleys on Martian volcanoes Journal of Geophysical Research 95 1432514344.CrossRefGoogle Scholar
Hamilton, V.E. and Christensen, P.R., 2005 Evidence for extensive, olivine-rich bedrock on Mars Geology 33 6 433436.CrossRefGoogle Scholar
Harvey, R.P. and McSween, H.Y. Jr., 1996 A possible hightemperature origin for the carbonates in the Martian meteorite ALH84001 Nature 382 4951.CrossRefGoogle ScholarPubMed
Hay, R.L., 1986 Geologic occurrence of zeolites and some associated minerals Pure and Applied Chemistry 58 13391342.CrossRefGoogle Scholar
Hoefen, T.M. Clark, R.N. Bandfield, J.L. Smith, M.D. Pearl, J.C. and Christensen, P.R., 2003 Discovery of olivine in the Nili Fossae region of Mars Science 302 627630.CrossRefGoogle ScholarPubMed
Hower, J. Eslinger, E.V. Hower, M.E. and Perry, E.A., 1976 Mechanism of burial metamorphism of argillaceous sediments: 1 Mineralogical and chemical evidence. Geological Society of America Bulletin 87 725737.2.0.CO;2>CrossRefGoogle Scholar
Hunt, G.R. and Salisbury, J.W., 1970 Visible and near-infrared spectra of minerals and rocks: I silicate minerals Modern Geology 1 283300.Google Scholar
Jakosky, B.M. and Jones, J.H., 1994 Evolution of water on Mars Nature 370 328329.CrossRefGoogle Scholar
King, T.V.V. and Clark, R.N., 1989 Spectral characteristics of chlorites and Mg-serpentines using high resolution reflectance spectroscopy Journal of Geophysical Research 94 B10 13,99714,008.CrossRefGoogle Scholar
Kozak, P.K. Duke, E.F. and Roselle, G.T., 2004 Mineral distribution in contact-metamorphosed siliceous dolomite at Ubehebe Peak, California, based on airborne imaging spectrometer data American Mineralogist 89 5–6 701703.CrossRefGoogle Scholar
Kruse, F.A. and Hauff, P.L., 1991 Identification of illite polytype zoning in disseminated gold deposits using reflectance spectroscopy and X-ray diffraction — Potential for mapping with imaging spectrometers IEEE Transactions on Geoscience and Remote Sensing (TGARS) 29 1 101104.CrossRefGoogle Scholar
Malin, M.C. Bell, J. Cantor, B. Caplinger, M. Calvin, W. Clancy, T. Edgett, K. Edwards, L. Haberle, R. James, P. Lee, S. Ravine, M. Thomas, P. and Wolff, M., 2007 Context Camera Investigation on board the Mars Reconnaissance Orbiter Journal of Geophysical Research 112 E05S04.CrossRefGoogle Scholar
McEwen, A.S. Eliason, E. Bergstrom, J. Bridges, N. Hansen, C. Delamere, W. Grant, J. Gulick, V. Herkenhoff, K. Keszthelyi, L. Kirk, R. Mellon, M. Squyres, S. Thomas, N. and Weitz, C., 2007 Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE) Journal of Geophysical Research 112 E05S02.CrossRefGoogle Scholar
McLennan, S.M., 2003 Sedimentary silica on Mars Geology 31 315318.2.0.CO;2>CrossRefGoogle Scholar
McSween, H.Y. Taylor, G.J. and Wyatt, M.B., 2009 Elemental composition of the Martian crust Science 324 736739.CrossRefGoogle ScholarPubMed
Melosh, H.J., 1989 Impact Cratering: a Geologic Process Oxford, UK Oxford University Press 245.Google Scholar
Merriman, R.J. Peacor, D.R., Frey, M. and Robinson, D., 1999 Very low-grade metapelite: mineralogy, microfabrics and measuring reaction progress Low-grade Metamorphism Oxford, UK Blackwell 1060.Google Scholar
Meunier, A., 2005 Clays Berlin Springer 472.Google Scholar
Milliken, R.E. Swayze, G. Arvidson, R. Bishop, J. Clark, R. Ehlmann, B. Green, R. Grotzinger, J. Morris, R. Murchie, S. Mustard, J. and Weitz, C., 2008 Opaline silica in young deposits on Mars Geology 36 847850.CrossRefGoogle Scholar
Milliken, R.E., Bish, D.L., Bristow, T., and Mustard, J.F. (2010) The case for mixed-layered clays on Mars. Lunar and Planetary Science Conference, 41, abstract 2030.Google Scholar
Mumma, M. Villanueva, G. Novak, R. Hewagama, T. Bonev, B. DiSanti, M. Mandell, A. and Smith, M., 2009 Strong release of methane on Mars in Northern Summer 2003 Science 323 10411045.CrossRefGoogle ScholarPubMed
Murchie, S.L. Arvidson, R. Bedini, P. Beisser, K. Bibring, J.-P. Bishop, J. Boldt, J. Cavender, P. Choo, T. Clancy, R. Darlington, E. Des Marais, D. Espiritu, R. Fort, D. Green, R. Guinness, E. Hayes, J. Hash, C. Heffernan, K. Hemmler, J. Heyler, G. Humm, D. Hutcheson, J. Izenberg, N. Lee, R. Lees, J. Lohr, D. Malaret, E. Martin, T. McGovern, J. McGuire, P. Morris, R. Mustard, J. Pelkey, S. Rhodes, E. Robinson, M. Roush, T. Schaefer, E. Seagrave, G. Seelos, F. Silvergate, P. Slavney, S. Smith, M. Shyong, W.-J. Strohbehn, K. Taylor, H. Thompson, P. Tossman, B. Wirzburger, M. and Wolff, M., 2007 Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) Journal of Geophysical Research 112 E05S03.CrossRefGoogle Scholar
Murchie, S.L. Mustard, J. Ehlmann, B. Milliken, R. Bishop, J. McKeown, N. Noe Dobrea, E. Seelos, F. Buczkowski, D. Wiseman, S. Arvidson, R. Wray, J. Swayze, G. Clark, R. Des Marais, D. McEwen, A. and Bibring, J.-P., 2009 A synthesis of Martian aqueous mineralogy after one Mars year of observations from the Mars Reconnaissance Orbiter Journal of Geophysical Research 114 E00D06.CrossRefGoogle Scholar
Murchie, S.L. Seelos, F. Hash, C. Humm, D. Malaret, E. McGovern, A. Choo, T. Seelos, K. Buczkowski, D. Morgan, M. Barnouin-Jha, O. Nair, H. Taylor, H. Patterson, G. Harvel, C. Mustard, J. Arvidson, R. McGuire, P. Smith, M. Wolff, M. Titus, T. Bibring, J.-P. and Poulet, F., 2009 The CRISM investigation and data set from the Mars Reconnaissance Orbiter’s Primary Science Phase Journal of Geophysical Research 114 E00D07.CrossRefGoogle Scholar
Mustard, J.F. Poulet, F. Head, J. Mangold, N. Bibring, J.-P. Pelkey, S. Fassett, C. Ngevin, Y. and Neukum, G., 2007 Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian Journal of Geophysical Research 112 E08S03.CrossRefGoogle Scholar
Mustard, J.F. Murchie, S. Pelkey, S. Ehlmann, B. Milliken, R. Grant, J. Bibring, J.-P. Poulet, F. Bishop, J. Noe Dobrea, E. Roach, L. Seelos, F. Arvidson, R. Wiseman, S. Green, R. Hash, C. Humm, D. Malaret, E. McGovern, J. Seelos, K. Clancy, T. Clark, R. Des Marais, D. Izenberg, N. Knudson, A. Langevin, Y. Martin, T. McGuire, P. Morris, R. Robinson, M. Roush, T. Smith, M. Swayze, G. Taylor, H. Titus, T. and Wolff, M., 2008 Hydrated silicate minerals on Mars observed by the CRISM instrument on MRO Nature 454 305309.CrossRefGoogle Scholar
Mustard, J.F. Ehlmann, B. Murchie, S. Poulet, F. Mangold, N. Head, J. Bibring, J.-P. and Roach, L., 2009 Composition, morphology, and stratigraphy of Noachian crust around the Isidis basin Journal of Geophysical Research 114 E00D12.CrossRefGoogle Scholar
Newsom, H.E., 1980 Hydrothermal alteration on impact melt sheets with implications for Mars Icarus 44 207216.CrossRefGoogle Scholar
Parente, M. (2008) A new approach to denoising CRISM images. Lunar Planetary Science Conference, 39, abstract #2528.Google Scholar
Parmentier, E.M. and Zuber, M.T., 2007 Early evolution of Mars with mantle compositional stratificationn or hydrothermal crustal cooling Journal of Geophysical Research 112 E05014.CrossRefGoogle Scholar
Pelkey, S.M. Mustard, J. Murchie, S. Clancy, R. Wolff, M. Smith, M. Milliken, R. Bibring, J.-P. Gendrin, A. Poulet, F. Langevin, Y. and Gondet, B., 2007 CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance Journal of Geophysical Research 112 E08S14.CrossRefGoogle Scholar
Philpotts, A.R. and Ague, J.J., 2009 Principles of Igneous and Metamorphic Petrology 2nd edition New York Cambridge University Press 667.CrossRefGoogle Scholar
Poulet, F. Bibring, J.-P. Mustard, J. Gendrin, A. Mangold, N. Langevin, Y. Arvidson, R. Gondet, B. and Gomez, C. OMEGA team, 2005 Phyllosilicates on Mars and implications for early Martian climate Nature 438 623627.CrossRefGoogle ScholarPubMed
Rathbun, J.A. and Squyres, S.W., 2002 Hydrothermal systems associated with Martian Impact Craters Icarus 157 362372.CrossRefGoogle Scholar
Robinson, D. Bevins, R.E., Frey, M. and Robinson, D., 1999 Patterns of regional low-grade metamorphism in metabasites Low-grade Metamorphism Oxford, UK Blackwell 143168.Google Scholar
Rogers, A.D. and Christensen, P.R., 2007 Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration Journal of Geophysical Research 112 E01003.CrossRefGoogle Scholar
Rosenberg, P.E., 2002 The nature, formation, and stability of end-member illite: A hypothesis American Mineralogist 87 103107.CrossRefGoogle Scholar
Ruff, S.W., 2004 Spectral evidence for zeolite in the dust on Mars Icarus 168 131143.CrossRefGoogle Scholar
Schiffman, P. Day, H.W., Frey, M. and Robinson, D., 1999 Petrological methods for the study of very low grade metabasites Low-grade Metamorphism Oxford, UK Blackwell 108142.Google Scholar
Schwenzer, S.P. and Kring, D.A., 2009 Impact-generated hydrothermal systems capable of forming phyllosilicates on Noachian Mars Geology 37 10911094.CrossRefGoogle Scholar
Skok, J.R. Mustard, J.F. Ehlmann, B.L. Milliken, R.E. and Murchie, S.L., 2010 Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars Nature Geoscience.CrossRefGoogle Scholar
Smulikowski, W. Desmons, J. Harte, B. Sassi, F.P. and Schmid, R., 2003 A systematic nomenclature for metamorphic rocks: 2. Types, grade and facies of metamorphism Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks.Google Scholar
Spear, F.S., 1995 Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths Washington, D.C. Mineralogical Society of America Monograph 799.Google Scholar
Środoń, J., 1999 Nature of mixed-layer clays and mechanisms of their formation and alteration Annual Review of Earth and Planetary Science 27 1953.CrossRefGoogle Scholar
Swayze, G.A. Milliken, R. Clark, R. Bishop, J. Ehlmann, B. Pelkey, S. Mustard, J. and Murchie, S., 2007 Spectral evidence for hydrated volcanic and/or impact glass on Mars with MRO CRISM Seventh International Conference on Mars.Google Scholar
Swayze, G.A. Kokaly, R.F. Higgins, C.T. Clinkenbeard, J.P. Clark, R.N. Lowers, H.A. and Sutley, S.J., 2009 Mapping potentially asbestos-bearing rocks using imaging spectroscopy Geology 37 763766.CrossRefGoogle Scholar
Tosca, N.J. and Knoll, A.H., 2009 Juvenile chemical sediments and the long term persistence of water at the surface of Mars Earth and Planetary Science Letters 286 379386.CrossRefGoogle Scholar
Velde, B. and Iijima, A., 1988 Comparison of clay and zeolite mineral occurrences in Neogene age sediments from several deep wells Clays and Clay Minerals 36 337342.CrossRefGoogle Scholar
Whitney, G., 1990 Role of water in the smectite-to-illite reaction Clays and Clay Minerals 38 343350.CrossRefGoogle Scholar
Wiesenberger, T. and Selbekk, R.S., 2008 Multi-stage zeolite facies mineralization in the Hvalfjordur area, Iceland International Journal of Earth Sciences.CrossRefGoogle Scholar
Yau, Y.-C. Peacor, D.R. Beane, R.E. Essene, E.J. and McDowell, S.D., 1988 Microstructures, formation mechanisms, and depth-zoning of phyllosilicates in geothermally altered shales, Salton Sea, California Clays and Clay Minerals 36 110.Google Scholar
Zwart, H.J. Corvalon, J. James, H.L. Miyashira, A. Saggerson, E.P. Sobolev, V.S. Subramaniam, A.P. and Vallance, T.G., 1967 A scheme of metamorphic facies for cartographic representation International Union of Geological Sciences. Geological Newsletter 2 5774.Google Scholar