Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T05:30:42.384Z Has data issue: false hasContentIssue false

From Coupling Second-Order Stresses to Understanding and Predicting the Structural Response of a Dioctahedral Smectite

Published online by Cambridge University Press:  22 January 2024

Chadha Mejri*
Affiliation:
Faculté des Sciences de Bizerte, LR19ES20, Ressources, Matériaux et Ecosystèmes (RME), Université de Carthage, 7021 Bizerte, Tunisie
Walid Oueslati
Affiliation:
Faculté des Sciences de Bizerte, LR19ES20, Ressources, Matériaux et Ecosystèmes (RME), Université de Carthage, 7021 Bizerte, Tunisie
Abdesslem Ben Haj Amara
Affiliation:
Faculté des Sciences de Bizerte, LR19ES20, Ressources, Matériaux et Ecosystèmes (RME), Université de Carthage, 7021 Bizerte, Tunisie

Abstract

The employment of clay minerals in the transport of water, nutrients, and contaminants depends on a few factors, including permeability, hydration behavior, ion-exchange efficiency, and more. With the application of external stress, it is still difficult to understand how clay particles swell and collapse, how water is retained, how hydration heterogeneities are formed within crystallites, and how interlamellar space is organized. The present work studied the link between geochemical, thermal, kinetic constraints (established at the laboratory scale), and intrinsic clay features by exchanging Na-rich montmorillonite (SWy2) with Ni2+, Mg2+, or Zn2+ cations. By comparing the experimental 00l reflections with the calculated reflections obtained from the structural models, quantitative X-ray diffraction (XRD) analysis has enabled the building of a theoretical profile describing the layer stacking mode (LSM) and allowed the description of interlayer space (IS) configuration along the c* axis. Regardless of the type of the exchangeable cations (EC), XRD modeling revealed that all samples exhibited interstratified hydration behavior within the crystallite size, which probably indicates partial or incomplete saturation of the IS. This theoretical result was defined by the appearance of two hydration states (1W and 2W), which were unrelated to the strain strength creating a higher degree of structural heterogeneity. Using the theoretical decomposition of the observed XRD patterns, the identification of all distinct layer populations and their stacking mode was achieved. The segregated LSM are, therefore, obviously superior as a function of stress strength.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Andrey G. Kalinichev

References

Abadie, P.M. (2020). La gestion des déchets radioactifs en France et dans le monde. In Annales des Mines-Responsabilite et environnement, https://doi.org/10.3917/re1.097.0048.CrossRefGoogle Scholar
Ahmed, H.A., Soliman, M.S., Othman, S.A.. (2021). Synthesis and characterization of magnetic nickel ferrite-modified montmorillonite nanocomposite for Cu (II) and Zn (II) ions removal from wastewater. Egyptian Journal of Chemistry. 64, 56275645, 10.21608/ejchem.2021.69597.3527.Google Scholar
Alshabanat, M., Al-Arrash, A., Mekhamer, W.. (2013). Polystyrene/montmorillonite nanocomposites: Study of the morphology and effects of sonication time on thermal stability. Journal of Nanomaterials. 2013, 650725, 10.1155/2013/650725.Google Scholar
Altin, O., Ozbelge, O.H., Dogu, T.. (1999). Effect of pH, flow rate and concentration on the sorption of Pb and Cd on montmorillonite: I. Experimental. Journal of Chemical Technology & Biotechnology. 74, 1211311138, 10.1002/(SICI)1097-4660(199912)74:12<1131::AID-JCTB158>3.0.CO;2-0.3.0.CO;2-0>CrossRefGoogle Scholar
Altin, O., Ozbelge, O.H., Dogu, T.. (1999). Effect of pH, flow rate and concentration on the sorption of Pb and Cd on montmorillonite: II. Modelling. Journal of Chemical Technology & Biotechnology. 74, 1211391144, 10.1002/(SICI)1097-4660(199912)74:12<1139::AID-JCTB159>3.0.CO;2-Q.Google Scholar
Amara, A.B.H.. (1997). X-ray diffraction, infrared and TGA/DTG analysis of hydrated nacrite. Clay Minerals. 32, 3463470, 10.1180/claymin.1997.032.3.08.Google Scholar
Ammar, M., Oueslati, W., & Ben Haj Amara, A. (2018). Mg-Exchanged Montmorillonite Undergoing External Environmental Solicitation: Crystalline Swelling Process Investigation. In Conference of the Arabian Journal of Geosciences, https://doi.org/10.1007/978-3-030-01575-6_44.CrossRefGoogle Scholar
Ammar, M., Oueslati, W., Ben Rhaiem, H., Ben Haj Amara, A.. (2014). Quantitative XRD analysis of the dehydration–hydration performance of (Na+, Cs+) exchanged smectite. Desalination and Water Treatment. 52, 22-244314–33, 10.1080/19443994.2013.803324.Google Scholar
Ammar, M., Oueslati, W., Chorfi, N., Rhaiem, H.B.. (2014). Interlamellar space configuration under variable environmental conditions in the case of Ni-exchanged montmorillonite: Quantitative XRD analysis. Journal of Nanomaterials. 2014, 284612, 10.1155/2014/284612.Google Scholar
Ammar, M., Oueslati, W., Rhaiem, H.B., Amara, A.B.H.. (2014). Effect of the hydration sequence orientation on the structural properties of Hg exchanged montmorillonite: Quantitative XRD analysis. Journal of Environmental Chemical Engineering. 2, 316041611, 10.1016/j.jece.2014.05.022.CrossRefGoogle Scholar
Anastácio, A.S., Aouad, A., Sellin, P., Fabris, J.D., Bergaya, F., Stucki, J.W.. (2008). Characterization of a redox-modified clay mineral with respect to its suitability as a barrier in radioactive waste confinement. Applied Clay Science. 39, 3-4172179, 10.1016/j.clay.2007.05.007.Google Scholar
Antoine, P., Marchiol, A., Brocandel, M., Gros, Y.. (2005). Découverte de structures périglaciaires (sand-wedges et composite-wedges) sur le site de stockage de déchets radioactifs de l‘Aube (France). Comptes Rendus Geoscience. 337, 1614621473, 10.1016/j.crte.2005.08.008.CrossRefGoogle Scholar
Babel, S., Kurniawan, T.A.. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials. 97, 1-3219243, 10.1016/S0304-3894(02)00263-7.CrossRefGoogle ScholarPubMed
Bailey, S.W. (1980). Structures of layer silicates. In: Crystal Structures of Clay Minerals and their X-Ray Identification (Ed.), Mineralogical Society of Great Britain and Ireland.Google Scholar
Bataillon, C., Musy, C., Roy, M.. (2001). Corrosion des surconteneurs de déchets, cas d‘un surconteneur en acier faiblement allié. Le Journal De Physique IV. 11, Pr1267-Pr1-274, 10.1051/jp4:2001127.Google Scholar
Ben Brahim, J., Besson, G., & Tchoubar, C. (1984). Etude des profils des bandes de diffraction X d‘une beidellite-Na hydratée à deux couches d‘eau. Détermination du mode d‘empilement des feuillets et des sites occupés par l‘eau. Journal of Applied Crystallography, 17(9), 179188. https://doi.org/10.1107/S0021889884011262.Google Scholar
Berend, I. (1991). Les mécanismes d‘hydratation de montmorillonites homoioniques pour des pressions relatives inferieures à 0.95 (Doctoral dissertation, Institut National Polytechnique de Lorraine).Google Scholar
Bérend, I., Cases, J.M., François, M., Uriot, J.P., Michot, L., Masion, A., Thomas, F.. (1995). Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites: 2. The Li+ Na+, K+, Rb+ and Cs+-exchanged forms. Clays and Clay Minerals. 43, 3324336, 10.1346/CCMN.1995.0430307.CrossRefGoogle Scholar
Bergaya, F.B.K.G., & Lagaly, G. (2013). General introduction: clays, clay minerals, and clay science. In Developments in clay science (Ed.), Handbook of Clay Science (pp. 119). Elsevier.Google Scholar
Bobin, J.L., Huffer, E., & Nifenecker, H. (2021). 20-LE STOCKAGE DES DÉCHETS NUCLÉAIRES EN SITE PROFOND. In L’énergie de demain (Ed.), (pp. 429448). EDP Sciences.Google Scholar
Brown, G. (1982). Crystal Structures of Clay Minerals and their X-ray identification. The Mineralogical Society of Great Britain and Ireland.Google Scholar
Carretero, M.I., Pozo, M.. (2009). Clay and non-clay minerals in the pharmaceutical industry: Part I. Excipients and medical applications. Applied Clay Science. 46, 17380, 10.1016/j.clay.2009.07.017.Google Scholar
Carretero, M.I., Pozo, M.. (2010). Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II Active ingredients. Applied Clay Science. 47, 3–4171181, 10.1016/j.clay.2009.10.016.CrossRefGoogle Scholar
Cases, J.M., Bérend, I., François, M., Uriot, L.P., Michot, L.J., Thomas, F.. (1997). Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite: 3. The Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms. Clays and Clay Minerals. 45, 822, 10.1346/CCMN.1997.0450102.Google Scholar
Chaari, I., Medhioub, M., Jamoussi, F.. (2011). Use of clay to remove heavy metals from Jebel Chakir landfill leachate. Journal of Applied Sciences in Environmental Sanitation. 6, 2143148.Google Scholar
Chalghaf, R., Oueslati, W., Ammar, M., Rhaiem, H.B., Amara, A.B.H.. (2012). Effect of an “in situ” hydrous strain on the ionic exchange process of dioctahedral smectite: Case of solution containing (Cu2+, Co2+) cations. Applied Surface Science. 258, 2290329040, 10.1016/j.apsusc.2012.05.144.CrossRefGoogle Scholar
Chalghaf, R., Oueslati, W., Ammar, M., Rhaiem, H.B., Amara, A.B.H.. (2013). Effect of temperature and pH value on cation exchange performance of a natural clay for selective (Cu2+, Co2+) removal: Equilibrium, sorption and kinetics. Progress in Natural Science: Materials International. 23, 12335, 10.1016/j.pnsc.2013.01.004.Google Scholar
Coles, C.A., Yong, R.N.. (2002). Aspects of kaolinite characterization and retention of Pb and Cd. Applied Clay Science. 22, 1-23945, 10.1016/S0169-1317(02)00110-2.Google Scholar
Cui, J., Zhang, Z., Han, F.. (2020). Effects of pH on the gel properties of montmorillonite, palygorskite and montmorillonite-palygorskite composite clay. Applied Clay Science. 190, 105543, 10.1016/j.clay.2020.105543.CrossRefGoogle Scholar
Dazas, B., Ferrage, E., Delville, A., Lanson, B.. (2014). Interlayer structure model of tri-hydrated low-charge smectite by X-ray diffraction and Monte Carlo modeling in the Grand Canonical ensemble. American Mineralogist. 99, 17241735, 10.2138/am.2014.4846.Google Scholar
Dazas, B., Lanson, B., Delville, A., Robert, J.L., Komarneni, S., Michot, L.J., Ferrage, E.. (2015). Influence of tetrahedral layer charge on the organization of interlayer water and ions in synthetic Na-saturated smectites. The Journal of Physical Chemistry C. 119, 841584172, 10.1021/jp5123322.CrossRefGoogle Scholar
De Queiroga, L.N.F., Franca, D.B., Rodrigues, F., Santos, I.M., Fonseca, M.G., Jaber, M.. (2019). Functionalized bentonites for dye adsorption: Depollution and production of new pigments. Journal of Environmental Chemical Engineering. 7, 5103333, 10.1016/j.jece.2019.103333.CrossRefGoogle Scholar
Dizier, A. (2011). Caractérisation des effets de température dans la zone endommagée autour de tunnels de stockage de déchets nucléaires dans des roches argileuses.Google Scholar
Drits, V.A., & Tchoubar, C. (1990). The modelization method in the determination of the structural characteristics of some layer silicates: Internal structure of the layers, nature and distribution of the stacking faults. In X-ray Diffraction by Disordered Lamellar Structures (pp. 233303). Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Es-Sahbany, H., Berradi, M., Nkhili, S., Hsissou, R., Allaoui, M., Loutfi, M., El Youbi, M.S.. (2019). Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay. Materials Today: Proceedings. 13, 866875, 10.1016/j.matpr.2019.04.050.Google Scholar
Ferrage, E.. (2016). Investigation of the interlayer organization of water and ions in smectite from the combined use of diffraction experiments and molecular simulations. A review of methodology, applications, and perspectives. Clays and Clay Minerals. 64, 4348373, 10.1346/CCMN.2016.0640401.CrossRefGoogle Scholar
Ferrage, E., Kirk, C.A., Cressey, G., Cuadros, J.. (2007). Dehydration of Ca-montmorillonite at the crystal scale Part I: Structure evolution. American Mineralogist. 92, 79941006, 10.2138/am.2007.2396.CrossRefGoogle Scholar
Ferrage, E., Kirk, C.A., Cressey, G., Cuadros, J.. (2007). Dehydration of Ca-montmorillonite at the crystal scale. Part 2. Mechanisms and kinetics. American Mineralogist. 92, 710071017, 10.2138/am.2007.2397.CrossRefGoogle Scholar
Ferrage, E., Lanson, B., Malikova, N., Plançon, A., Sakharov, B.A., Drits, V.A.. (2005). New insights on the distribution of interlayer water in bi-hydrated smectite from X-ray diffraction profile modeling of 00l reflections. Chemistry of Materials. 17, 1334993512, 10.1021/cm047995v.CrossRefGoogle Scholar
Ferrage, E., Lanson, B., Michot, L.J., Robert, J.L.. (2010). Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 1. Results from X-ray diffraction profile modeling. The Journal of Physical Chemistry C. 114, 1045154526, 10.1021/jp909860p.CrossRefGoogle Scholar
Ferrage, E., Lanson, B., Sakharov, B.A., Drits, V.A.. (2005). Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties. American Mineralogist. 90, 8–913581374, 10.2138/am.2005.1776.Google Scholar
Gomes, CDSF, Silva, J.B.P.. (2007). Minerals and clay minerals in medical geology. Applied Clay Science. 36, 1-3421, 10.1016/j.clay.2006.08.006.CrossRefGoogle Scholar
Gregoire, B., Dazas, B., Leloup, M., Hubert, F., Tertre, E., Ferrage, E., Petit, S.. (2020). Optical theory-based simulation of attenuated total reflection infrared spectra of montmorillonite films. Clays and Clay Minerals. 68, 175187, 10.1007/s42860-020-00073-x.CrossRefGoogle Scholar
Gubitosa, J., Rizzi, V., Fini, P., Cosma, P.. (2019). Hair care cosmetics: From traditional shampoo to solid clay and herbal shampoo, a review. Cosmetics. 6, 113, 10.3390/cosmetics6010013.CrossRefGoogle Scholar
Güven, N., Bailey, S.W.. (1988). Hydrous Phyllosilicates. Reviews in Mineralogy. 19, 497559.Google Scholar
Hu, C., Zhu, P., Cai, M., Hu, H., Fu, Q.. (2017). Comparative adsorption of Pb (II), Cu (II) and Cd (II) on chitosan saturated montmorillonite: Kinetic, thermodynamic and equilibrium studies. Applied Clay Science. 143, 320326, 10.1016/j.clay.2017.04.005.CrossRefGoogle Scholar
Huber, F.M., Heck, S., Truche, L., Bouby, M., Brendlé, J., Hoess, P., Schäfer, T.. (2015). Radionuclide desorption kinetics on synthetic Zn/Ni-labeled montmorillonite nanoparticles. Geochimica et Cosmochimica Acta. 148, 426441, 10.1016/j.gca.2014.10.010.Google Scholar
Hussain, S.T., Ali, S.A.K.. (2021). Removal of heavy metal by ion exchange using bentonite clay. Journal of Ecological Engineering. 22, 1104111, 10.12911/22998993/128865.CrossRefGoogle Scholar
Ishidera, T., Okazaki, M., Yamada, Y., Tomura, T., Shibutani, S.. (2022). Sorption of Sn and Nb on montmorillonite at neutral to alkaline pH. Journal of Nuclear Science and Technology. 60, 5536546, 10.1080/00223131.2022.2125453.Google Scholar
Jiang, K., Liu, K., Peng, Q., Zhou, M.. (2021). Adsorption of Pb (II) and Zn (II) ions on humus-like substances modified montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 631, 127706, 10.1016/j.colsurfa.2021.127706.CrossRefGoogle Scholar
Karmous, M.S., Ben Rhaiem, H., Naamen, S., Oueslati, W., Ben Haj Amara, A.. (2006). The interlayer structure and thermal behavior of Cu and Ni montmorillonites. Zeitschrift Für Kristallographie Supplement. 23, 2006431436, 10.1524/zksu.2006.suppl_23.431.CrossRefGoogle Scholar
Karmous, M.S., Rhaiem, H.B., Robert, J.L., Lanson, B., Amara, A.B.H.. (2009). Charge location effect on the hydration properties of synthetic saponite and hectorite saturated by Na+, Ca2+ cations: XRD investigation. Applied Clay Science. 46, 14350, 10.1016/j.clay.2009.07.007.CrossRefGoogle Scholar
Komadel, P., Bujdák, J., Madejová, J., Šucha, V., Elsass, F.. (1996). Effect of non-swelling layers on the dissolution of reduced-charge montmorillonite in hydrochloric acid. Clay Minerals. 31, 3333345, 10.1180/claymin.1996.031.3.04.CrossRefGoogle Scholar
Kozaki, T., Sawaguchi, T., Fujishima, A., Sato, S.. (2010). Effect of exchangeable cations on apparent diffusion of Ca2+ ions in Na-and Ca-montmorillonite mixtures. Physics and Chemistry of the Earth, Parts A/B/C. 35, 6-8254258, 10.1016/j.pce.2010.04.006.CrossRefGoogle Scholar
Kraevsky, S.V., Tournassat, C., Vayer, M., Warmont, F., Grangeon, S., Wakou, B.F.N., Kalinichev, A.G.. (2020). Identification of montmorillonite particle edge orientations by atomic-force microscopy. Applied Clay Science. 186, 105442, 10.1016/j.clay.2020.105442.CrossRefGoogle Scholar
Kretz, R. (1983). Symbols for rock-forming minerals. American Mineralogist.Google Scholar
Lahbib, M., Meftah, M., Mejri, C., Oueslati, W., Amara, A.B.H.. (2023). The starting stoichiometry, keys parameter to enhance the intrinsic microstructural and functional properties of synthesized hybrid nanocomposites chitosan/Na-montmorillonite/ZnO nanoparticlest type. Applied Surface Science Advances. 13, 100369, 10.1016/j.apsadv.2023.100369.CrossRefGoogle Scholar
Landrein, P., Vigneron, G., Delay, J., Lebon, P., Pagel, M.. (2013). Lithologie, hydrodynamisme et thermicité dans le système sédimentaire multicouche recoupé par les forages Andra de Montiers-sur-Saulx (Meuse). Bulletin De La Société Géologique De France. 184, 6519543, 10.2113/gssgfbull.184.6.519.CrossRefGoogle Scholar
Lanson, B. (2011). Modelling of X-ray diffraction profiles: Investigation of defective lamellar structure crystal chemistry. In Layered Mineral Structures and their Application in Advanced Technologies (Ed.), European Mineralogical Union and the Mineralogical Society of Great Britain and Ireland.Google Scholar
Lanson, B.. (2005). Crystal structure of mixed-layer minerals and their X-ray identification: New insights from X-ray diffraction profile modeling. Clay Science. 12, Supplement115, 10.11362/jcssjclayscience1960.12.Supplement1_1.Google Scholar
Laverov, N.P., Yudintsev, S.V., Kochkin, B.T., Malkovsky, V.I.. (2016). The Russian strategy of using crystalline rock as a repository for nuclear waste. Elements. 10.2113/gselements.12.4.253.CrossRefGoogle Scholar
Leong, Y.K., Du, M., Au, P.I., Clode, P., Liu, J.. (2018). Microstructure of sodium montmorillonite gels with long aging time scale. Langmuir. 34, 3396739682, 10.1021/acs.langmuir.8b00213.CrossRefGoogle Scholar
Leoni, M.. (2008). Diffraction analysis of layer disorder. Zeitschrift Für Kristallographie. 223, 9561568, 10.1524/zkri.2008.1214.Google Scholar
Liu, L., Zhang, C., Jiang, W., Li, X., Dai, Y., Jia, H.. (2021). Understanding the sorption behaviors of heavy metal ions in the interlayer and nanopore of montmorillonite: A molecular dynamics study. Journal of Hazardous Materials. 416, 125976, 10.1016/j.jhazmat.2021.125976.CrossRefGoogle ScholarPubMed
Liu, X., Yang, G.. (2022). Mechanisms for cation exchange at the interfaces of montmorillonite nanoparticles: Insights for Pb2+ control. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 641, 128556, 10.1016/j.colsurfa.2022.128556.Google Scholar
Mahy, J.G., Tsaffo Mbognou, M.H., Léonard, C., Fagel, N., Woumfo, E.D., Lambert, S.D.. (2022). Natural Clay Modified with ZnO/TiO2 to Enhance Pollutant Removal from Water. Catalysts. 12, (2), 148, 10.3390/catal12020148.CrossRefGoogle Scholar
Manohar, D.M., Krishnan, K.A., Anirudhan, T.S.. (2002). Removal of mercury (II) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole-clay. Water Research. 36, (6), 16091619, 10.1016/S0043-1354(01)00362-1.CrossRefGoogle ScholarPubMed
Marty, N.C., Grangeon, S., Lassin, A., Madé, B., Blanc, P., Lanson, B.. (2020). A quantitative and mechanistic model for the coupling between chemistry and clay hydration. Geochimica et Cosmochimica Acta. 283, 124135, 10.1016/j.gca.2020.05.029.CrossRefGoogle Scholar
Massaro, M., Lazzara, G., Milioto, S., Noto, R., Riela, S.. (2017). Covalently modified halloysite clay nanotubes: Synthesis, properties, biological and medical applications. Journal of Materials Chemistry B. 5, (16), 28672882, 10.1039/C7TB00316A.CrossRefGoogle ScholarPubMed
Meftah, M., Oueslati, W., & Amara, A.B.H. (2010). Synthesis of zeolites A and P from 1: 1 and HS from 2: 1 clays. In IOP Conference Series: Materials Science and Engineering, 13(1), (p. 18). IOP Publishing.Google Scholar
Meftah, M., Oueslati, W., Amara, A.B.H.. (2011). XRD and MAS NMR investigation of synthesized zeolite from 2: 1 Tunisian clays: Effect of concentration of NaOH solution on the final product nature. Zeithshrift für Kristallographie, Proceedings. 1, 467472, 10.1524/zkpr.2011.0071.Google Scholar
Mejri, C., Oueslati, W., Haj, B.e.n. & Amara, A. (2022a). Effect of layer type distribution within the crystallite on the diffracted (00ℓ) theoretical intensities. In E3S Web of Conferences, EDP Sciences, https://doi.org/10.1051/e3sconf/202235403009.Google Scholar
Mejri, C., Oueslati, W., Amara, A.B.H.. (2021). How the Solid/Liquid Ratio Affects the Cation Exchange Process and Porosity in the Case of Dioctahedral Smectite: Structural Analysis?. Adsorption Science & Technology. 2021, 9732092, 10.1155/2021/9732092.Google Scholar
Mejri, C., Oueslati, W., Amara, A.B.H.. (2022). Structural Alteration, Hydration Stability, Heavy Metal Removal Efficiency, and Montmorillonite Porosity Fate by Coupling the Soil Solution pH and a Thermal Gradient. Adsorption Science & Technology. 2022, 4421932, 10.1155/2022/4421932.CrossRefGoogle Scholar
Mejri, C., Oueslati, W., Amara, A.B.H.. (2023). Structure and reactivity assessment of dioctahedral montmorillonite during provoked variable sequential cation exchange process via XRD modelling approach. Applied Surface Science Advances. 15, 100403, 10.1016/j.apsadv.2023.100403.CrossRefGoogle Scholar
Mermut, A.R., Cano, A.F.. (2001). Baseline studies of the clay minerals society source clays: Chemical analyses of major elements. Clays and Clay Minerals. 49, (5), 381386, 10.1346/CCMN.2001.0490504.CrossRefGoogle Scholar
Moldoveanu, G., Papangelakis, V.. (2021). Chelation-assisted ion-exchange leaching of rare earths from clay minerals. Metals. 11, (8), 1265, 10.3390/met11081265.CrossRefGoogle Scholar
Moll, W.F. Jr. (2001). Baseline studies of the clay minerals society source clays: Geological origin. Clays and Clay Minerals. 49, (5), 374380, 10.1346/CCMN.2001.0490503.CrossRefGoogle Scholar
Momeni, M., Bayat, M., Ajalloeian, R.. (2022). Laboratory investigation on the effects of pH-induced changes on geotechnical characteristics of clay soil. Geomechanics and Geoengineering. 17, (1), 188196, 10.1080/17486025.2020.1716084.CrossRefGoogle Scholar
Mousavi, S.M., Hashemi, S.A., Salahi, S., Hosseini, M., Amani, A.M., & Babapoor, A. (2018). Development of clay nanoparticles toward bio and medical applications (pp. 167191). London, UK: IntechOpen.Google Scholar
Neves, HSDC, da Silva, T.L., da Silva, M.G.C., Guirardello, R., Vieira, M.G.A.. (2022). Ion exchange and adsorption of cadmium from aqueous media in sodium-modified expanded vermiculite. Environmental Science and Pollution Research. 29, (53), 7990379919, 10.1007/s11356-021-16841-8.Google ScholarPubMed
Newman, A.C.. (1987). Chemistry of Clays and Clay Minerals. Mineralogical Society of Great Britain & Ireland.Google Scholar
Nistor, I., Miron, N.. (2007). Depollution of uranyl polluted waters using pillared clays. Journal of Thermal Analysis and Calorimetry. 89, 977981, 10.1007/s10973-006-7701-4.CrossRefGoogle Scholar
Ohkubo, T., Okamoto, T., Kawamura, K., Guégan, R., Deguchi, K., Ohki, S., Shimizu, T., Tachi, Y., Iwadate, Y.. (2018). New insights into the Cs adsorption on montmorillonite clay from 133Cs solid-state NMR and density functional theory calculations. The Journal of Physical Chemistry A. 122, (48), 93269337, 10.1021/acs.jpca.8b07276.Google Scholar
Otunola, B.O., Ololade, O.O.. (2020). A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environmental Technology & Innovation. 18, 100692, 10.1016/j.eti.2020.100692.CrossRefGoogle Scholar
Oueslati, W.. (2019). Effect of soil solution pH during the tetracycline intercalation on the structural properties of a dioctahedral smectite: Microstructural analysis. Journal of Nanomaterials. 2019, 7414039, 10.1155/2019/7414039.Google Scholar
Oueslati, W., Ammar, M., Chorfi, N.. (2015). Quantitative XRD analysis of the structural changes of Ba-exchanged montmorillonite: Effect of an in situ hydrous perturbation. Minerals. 5, (3), 507526, 10.3390/min5030507.Google Scholar
Oueslati, W., Ben Rhaiem, H., Karmous, M.S., Naaman, S., Ben Haj Amara, A.. (2006). Study of the structural evolution and selectivity of Wyoming montmorillonite in relation with the concentration of Cu2+ and Ni2+. Zeitschrift Für Kristallographie, Supplement. 23, 425429, 10.1524/zksu.2006.suppl_23.425.Google Scholar
Oueslati, W., Chorfi, N., Abdelwahed, M.. (2017). Effect of mechanical constraint on the hydration properties of Na-montmorillonite: Study under extreme relative humidity conditions. Powder Diffraction. 32, (S1), S160S167, 10.1017/S088571561700046X.CrossRefGoogle Scholar
Oueslati, W., Karmous, M.S., Rhaiem, H.B., Lanson, B., Amara, A.B.H.. (2007). Effect of interlayer cation and relative humidity on the hydration properties of a dioctahedral smectite. Zeitschrift Für Kristallographie, Supplement. 26, 417422, 10.1524/zksu.2007.2007.suppl_26.417.CrossRefGoogle Scholar
Oueslati, W., Meftah, M.. (2018). Discretization of the water uptake process of Na-montmorillonite undergoing atmospheric stress: XRD modeling approach. Advances in Materials Science and Engineering. 2018, 5219624, 10.1155/2018/5219624.CrossRefGoogle Scholar
Oueslati, W., Mefath, M., Rhaiem, H.B., Amara, A.B.H.. (2009). Cation exchange selectivity versus concentration of competing heavy metal cations (Pb2+, Zn2+): Case of Na-montmorillonite. Physics Procedia. 2, (3), 10591063, 10.1016/j.phpro.2009.11.063.Google Scholar
Oueslati, W., Mejri, C., & Amara, A.B.H. (2022a). X-ray Diffraction Profiles Modeling Method for Layered Structures Reconstruction: Nanoclay Structural Verification. In Nanoclay - Recent Advances, New Perspectives and Applications (Ed.), Intechopen (pp. 223). .Google Scholar
Oueslati, W., Mejri, C., Ben Haj Amara, A.. (2022). Impact of Uniaxial Mechanical Perturbation on Structural Properties and Smectite Porosity Features: Ion Exchanger Efficiency and Adsorption Performance Fate. Advances in Civil Engineering. 2022, 4441705, 10.1155/2022/4441705.Google Scholar
Oueslati, W., Rhaiem, H.B., Amara, A.B.H.. (2011). XRD investigations of hydrated homoionic montmorillonite saturated by several heavy metal cations. Desalination. 271, (1-3), 139149, 10.1016/j.desal.2010.12.018.CrossRefGoogle Scholar
Oueslati, W., Rhaiem, H.B., Amara, A.B.H.. (2012). Effect of relative humidity constraint on the metal exchanged montmorillonite performance: An XRD profile modeling approach. Applied Surface Science. 261, 396404, 10.1016/j.apsusc.2012.08.022.CrossRefGoogle Scholar
Panchal, A., Fakhrullina, G., Fakhrullin, R., Lvov, Y.. (2018). Self-assembly of clay nanotubes on hair surface for medical and cosmetic formulations. Nanoscale. 10, 18205, 10.1039/C8NR05949G.Google ScholarPubMed
Papadopoulos, A., Giouri, K., Tzamos, E., Filippidis, A., Stoulos, S.. (2014). Natural radioactivity and trace element composition of natural clays used as cosmetic products in the Greek market. Clay Minerals. 49, (1), 5362, 10.1180/claymin.2014.049.1.05.CrossRefGoogle Scholar
Potgieter, J.H., Potgieter-Vermaak, S.S., Kalibantonga, P.D.. (2006). Heavy metals removal from solution by palygorskite clay. Minerals Engineering. 19, (5), 463470, 10.1016/j.mineng.2005.07.004.CrossRefGoogle Scholar
Pufahl, D.E., Fredlund, D.G., Rahardjo, H.. (1983). Lateral earth pressures in expansive clay soils. Canadian Geotechnical Journal. 20, (2), 228241, 10.1139/t83-027.Google Scholar
Pusch, R., Knutsson, S., Al-Taie, L., Hatem, M.. (2012). Optimal ways of disposal of highly radioactive waste. Natural Science. 4, (11A), 906918, 10.4236/ns.2012.431118.CrossRefGoogle Scholar
Sakharov, B.A., & Lanson, B. (2013). X-ray identification of mixed-layer structures: modelling of diffraction effects. In Developments in Clay Science (Ed.), Handbook of Clay Science (pp. 51135). Elsevier.CrossRefGoogle Scholar
Sakharov, B.A., Drits, V.A.. (1973). Mixed-layer kaolinite-montmorillonite: A comparison of observed and calculated diffraction patterns. Clays and Clay Minerals. 21, 1517, 10.1346/CCMN.1973.0210104.CrossRefGoogle Scholar
Saravanan, S., Ramamurthy, P.C., Madras, G.. (2015). Effects of temperature and clay content on water absorption characteristics of modified MMT clay/cyclic olefin copolymer nanocomposite films: Permeability, dynamic mechanical properties and the encapsulated organic device performance. Composites Part B: Engineering. 73, 19, 10.1016/j.compositesb.2014.12.030.CrossRefGoogle Scholar
Sato, T., Watanabe, T., Otsuka, R.. (1992). Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays and Clay Minerals. 40, 103113, 10.1346/CCMN.1992.0400111.Google Scholar
Scardi, P., Leoni, M.. (2002). Whole powder pattern modelling. Acta Crystallographica Section A: Foundations of Crystallography. 58, (2), 190200, 10.1107/S0108767301021298.Google ScholarPubMed
Scardi, P., Leoni, M., Beyerlein, K.R.. (2011). On the modelling of the powder pattern from a nanocrystalline material. Zeitschrift Für Kristallographie. 226, (12), 924933, 10.1524/zkri.2011.1448.CrossRefGoogle Scholar
Scholtzová, E., Tunega, D.. (2019). Density functional theory study of the stability of the tetrabutylphosphonium and tetrabutylammonium montmorillonites. Clay Minerals. 54, (1), 4148, 10.1180/clm.2019.5.CrossRefGoogle Scholar
Schroeder, P.A., Pruett, R.J., Melear, N.D.. (2004). Crystal-chemical changes in an oxidative weathering front in a Georgia kaolin deposit. Clays and Clay Minerals. 52, 211220, 10.1346/CCMN.2004.0520207.CrossRefGoogle Scholar
Segad, M., Jonsson, B., Åkesson, T., Cabane, B.. (2010). Ca/Na montmorillonite: Structure, forces and swelling properties. Langmuir. 26, (8), 57825790, 10.1021/la9036293.CrossRefGoogle ScholarPubMed
Sellin, P., Leupin, O.X.. (2013). The use of clay as an engineered barrier in radioactive-waste management–a review. Clays and Clay Minerals. 61, (6), 477498, 10.1346/CCMN.2013.0610601.Google Scholar
Shannon, R.D.. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography. 32, (5), 751767, 10.1107/S0567739476001551.Google Scholar
Shi, Y., Zhong, S., Wang, X., Feng, C.. (2022). A review of the removal of heavy metal ions in wastewater by modified montmorillonite. Water Policy. 24, (10), 15901609, 10.2166/wp.2022.033.Google Scholar
Sun, L., Hirvi, J.T., Schatz, T., Kasa, S., Pakkanen, T.A.. (2015). Estimation of montmorillonite swelling pressure: A molecular dynamics approach. The Journal of Physical Chemistry C. 119, (34), 1986319868, 10.1021/acs.jpcc.5b04972.CrossRefGoogle Scholar
Tan, J., Li, Y., Xia, L., Li, H., Song, S., Wu, L., Farías, M.E.. (2022). Enhancement of Cd (II) Adsorption on Microalgae-Montmorillonite Composite. Arabian Journal for Science and Engineering. 47, (6), 67156727, 10.1007/s13369-021-063-y.Google Scholar
Tan, S.Z., Zhang, K.H., Zhang, L.L., Xie, Y.S., Liu, Y.L.. (2008). Preparation and characterization of the antibacterial Zn2+ or/and Ce3+ loaded montmorillonites. Chinese Journal of Chemistry. 26, (5), 865869, 10.1002/cjoc.200890160.Google Scholar
Tlemsani, S., Taleb, Z., Piraúlt-Roy, L., & Taleb, S. (2022). Temperature and pH influence on Diuron adsorption by Algerian Mont-Na Clay. International Journal of Environmental Analytical Chemistry https://doi.org/10.1080/03067319.2022.2060093.CrossRefGoogle Scholar
Tournassat, C., Grangeon, S., Leroy, P., & Giffaut, E. (2013). Modeling specific pH dependent sorption of divalent metals on montmorillonite surfaces. A review of pitfalls, recent achievements and current challenges. American Journal of Science, .Google Scholar
Tournassat, C., Davis, J.A., Chiaberge, C., Grangeon, S., Bourg, I.C.. (2016). Modeling the acid–base properties of montmorillonite edge surfaces. Environmental Science & Technology. 50, (24), 1343613445, 10.1021/acs.est.6b04677.Google ScholarPubMed
Usman, A.R.A., Kuzyakov, Y., Stahr, K.. (2004). Effect of clay minerals on extractability of heavy metals and sewage sludge mineralization in soil. Chemistry and Ecology. 20, (2), 123135, 10.1080/02757540410001665971.CrossRefGoogle Scholar
Vidal, O., Baldeyrou, A., Beaufort, D., Fritz, B., Geoffroy, N., Lanson, B.. (2012). Experimental study of the stability and phase relations of clays at high temperature in a thermal gradient. Clays and Clay Minerals. 60, 200225, 10.1346/CCMN.2012.0600209.CrossRefGoogle Scholar
Wahba, M.M., Labib, B.F., Darwish, K.H.M., & Zaghloul, M.A. (2017). Application of some clay minerals to eliminate the hazards of heavy metals in contaminated soils. In 15th International conference on environmental science and technology, CEST.Google Scholar
Wakou, B.N., & Kalinichev, A.G. (2012). Molecular modeling of the swelling properties and interlayer structure of Cs, Na, K-Montmorillonite: Effects of charge distribution in the clay layers. In 5th International meeting Clays in Natural and Engineered Barriers for Radioactive Waste Confinement.Google Scholar
Warr, L.N.. (2020). Recommended abbreviations for the names of clay minerals and associated phases. Clay Minerals. 55, (3), 261264, 10.1180/clm.2020.30.CrossRefGoogle Scholar
Whitney, D.L., Evans, B.W.. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist. 95, (1), 185187, 10.2138/am.2010.3371.CrossRefGoogle Scholar
Whittaker, M.L., Lammers, L.N., Carrero, S., Gilbert, B., Banfield, J.F.. (2019). Ion exchange selectivity in clay is controlled by nanoscale chemical–mechanical coupling. Proceedings of the National Academy of Sciences. 116, (44), 2205222057, 10.1073/pnas.1908086116.CrossRefGoogle ScholarPubMed
Wu, M., Bi, E., Li, B.. (2022). Cotransport of nano-hydroxyapatite and different Cd (II) forms influenced by fulvic acid and montmorillonite colloids. Water Research. 218, 118511, 10.1016/j.watres.2022.118511.Google ScholarPubMed
Yan, H., Zhang, Z.. (2021). Effect and mechanism of cation species on the gel properties of montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 611, 125824, 10.1016/j.colsurfa.2020.125824.CrossRefGoogle Scholar
Yin, H., Zhu, J.. (2016). In situ remediation of metal contaminated lake sediment using naturally occurring, calcium-rich clay mineral-based low-cost amendment. Chemical Engineering Journal. 285, 112120, 10.1016/j.cej.2015.09.108.Google Scholar
Yingying, S., Baoqiang, Z., & Yang, W. (2020). Application of clay minerals in remediation of heavy metal pollution in soil. In E3S Web of Conferences. EDP Sciences, https://doi.org/10.1051/e3sconf/202020401011.Google Scholar
Yotsuji, K., Tachi, Y., Sakuma, H., Kawamura, K.. (2021). Effect of interlayer cations on montmorillonite swelling: Comparison between molecular dynamic simulations and experiments. Applied Clay Science. 204, 106034, 10.1016/j.clay.2021.106034.Google Scholar
Yuan, G.D., Theng, B.K.G., Churchman, G.J., & Gates, W.P. (2013). Clays and clay minerals for pollution control. In Developments in Clay Science (pp. 587644). Elsevier.Google Scholar
Zhang, C., Liu, L., Dai, Y., Zhu, K., Liu, Z., Jia, H.. (2022). Molecular dynamics simulations of exchange behavior of radionuclides into montmorillonite: Unraveling the dynamic processes and microscopic structures. Applied Clay Science. 226, 106579, 10.1016/j.clay.2022.106579.CrossRefGoogle Scholar
Zhang, C., Liu, X., Tinnacher, R.M., Tournassat, C.. (2018). Mechanistic understanding of uranyl ion complexation on montmorillonite edges: A combined first-principles molecular dynamics–surface complexation modeling approach. Environmental Science & Technology. 52, (15), 85018509, 10.1021/acs.est.8b02504.Google Scholar
Zhang, W., An, Y., Li, S., Liu, Z., Chen, Z., Ren, Y., Wang, S., Zhang, X., Wang, X.. (2020). Enhanced heavy metal removal from an aqueous environment using an eco-friendly and sustainable adsorbent. Scientific Reports. 10, (1), 16453, 10.1038/s41598-020-73570-7.CrossRefGoogle ScholarPubMed
Zhang, Y., Li, Y., Li, J., Hu, L., Zheng, X.. (2011). Enhanced removal of nitrate by a novel composite: Nanoscale zero valent iron supported on pillared clay. Chemical Engineering Journal. 171, (2), 526531, 10.1016/j.cej.2011.04.022.CrossRefGoogle Scholar
Zhu, Y., Iroh, J.O., Rajagopolan, R., Aykanat, A., Vaia, R.. (2022). Optimizing the synthesis and thermal properties of conducting polymer–montmorillonite clay nanocomposites. Energies. 15, (4), 1291, 10.3390/en15041291.CrossRefGoogle Scholar