Published online by Cambridge University Press: 01 January 2024
Two varieties of Zn-smectite were synthesized hydrothermally: sauconite, with an ideal composition of Na0.4Zn3(Si3.6Al0.4)O10(OH)2·nH2O; and a Zn equivalent of hectorite, with an ideal composition of Na0.4 (Li0.4Zn2.6)Si4O10(OH)2·nH2O (referred to here as Zn-hectorite). For comparison, hydrothermal synthesis of the related trioctahedral smectites of hectorite, Na0.4(Li0.4Mg2.6)Si4O10(OH)2·nH2O and hectorites containing Cu, Co or Ni in the octahedral sheets instead of Mg were also attempted. The results showed that sauconite, Zn-hectorite and hectorite could be synthesized in the temperature range 100–125°C but hectorites containing Cu, Co or Ni in the octahedral sheet, under the same conditions or even at a temperature of 150°C, could not.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.