Published online by Cambridge University Press: 02 April 2024
Iron-chromium hydroxides are important solid phases governing the aqueous concentrations of Cr(III) in soils and fly ashes. Although direct identification of noncrystalline (Fe,Cr)(OH)3 is difficult, the infrared spectra of noncrystalline Fe(OH)3 and Cr(OH)3, coprecipitated (Fe,Cr)(OH)3, and physical mixtures of Fe(OH)3 and Cr(OH)3 can be distinguished on the basis of the asymmetric stretching doublet (v3) of structural carbonate anions. As the Cr mole fraction of the coprecipitated (Fe,Cr)(OH)3 increases, the position of the low-frequency v3 peak (v3″) changes progressively to higher frequencies, and the carbonate v3 splitting decreases. No change in carbonate v3 splitting or v3″ location was observed for physical mixtures of Fe(OH)3 and Cr(OH)3. The changes in v3 splitting are believed to be caused by different degrees of polarization of the carbonate ligand by the Fe and Cr cations.
Pure Cr(OH)3 exhibits a strong affinity for carbonate and H2O and tends to remain noncrystalline even at very high pHs. In contrast, pure Fe(OH)3 gradually converts to crystalline goethite at high pH, to the exclusion of much of the H2O and carbonate. The presence of Cr in (Fe,Cr)(OH)3 solid solutions seems to inhibit the transformation to crystalline goethite. The strong association of carbonate with Cr and the kinetic inertness of Cr(III) inner-sphere complexes in general may account for the maintenance of noncrystalline solid-solution materials in lieu of transformation to a crystalline end product.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.