Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T08:34:55.526Z Has data issue: false hasContentIssue false

Measurement of Swelling of Individual Smectite Tactoids in situ using Atomic Force Microscopy

Published online by Cambridge University Press:  01 January 2024

Diana S. Arndt
Affiliation:
Department of Chemistry, Bucknell University, 17837, Lewisburg, PA, USA
Michael Mattei
Affiliation:
Department of Chemistry, Bucknell University, 17837, Lewisburg, PA, USA
Christopher A. Heist
Affiliation:
Department of Chemistry, Bucknell University, 17837, Lewisburg, PA, USA
Molly M. McGuire*
Affiliation:
Department of Chemistry, Bucknell University, 17837, Lewisburg, PA, USA
*
*E-mail address of corresponding author: mmcguire@bucknell.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Atomic force microscopy (AFM) is a novel method for measuring changes in clay swelling in situ at the tactoid level in an aqueous environment. While the swelling process has been directly observed at the mesoscale level for multi-tactoid aggregates and the associated pores, no method to date has allowed the direct observation of swelling dynamics at the nanoscale. In initial proof-of-concept studies, individual tactoids of a Na-exchanged nontronite (NAu-1) were imaged in a solution of 5 mM NaCl. When multiple line profiles were examined on the same tactoid, the changes in height varied and depended on which layers of the profile were transected, and demonstrated that AFM analyses can be used to directly probe intratactoid heterogeneity in the swelling process. To better visualize this heterogeneity, a method was developed to restrict AFM images to include only the portions of a tactoid above a threshold height. A comparison of the changes in these images for multiple threshold values revealed that swelling in one part of a tactoid may occur simultaneously with compression in another portion, which suggests that the encroachment of layers into intra-tactoid micropores can partially compensate for the overall volume change. Finally, to demonstrate the ability of this technique to monitor in situ swelling changes as the surrounding aqueous environment is modified, a tactoid of K-montmorillonite (SWy-2) was monitored during cation exchange as a KCl solution was replaced with NaCl. After exchange, a transition from the crystalline swelling regime to the osmotic regime was observed. Subsequent height profiles were unchanged for a period of several hours and indicated that the AFM measurements were stable in the absence of changes to the aqueous phase composition. Because this technique is the first method that allows the swelling of a single tactoid to be monitored in an aqueous solution, it complements the ensemble-averaged data obtained from diffraction and scattering techniques.

Type
Article
Copyright
Copyright © Clay Minerals Society 2018

References

Aldushin, K. Jordan, G. Aldushina, E. and Schmahli, W.W., 2007 On the kinetics of ion exchange in phlogopite — An in situ AFM study Clays and Clay Minerals 55 339347.CrossRefGoogle Scholar
Aldushin, K. Jordan, G. Fechtelkord, M. Schmahl, W.W. Becker, H.W. and Rammensee, W., 2004a On the mechanisms of apophyllite alteration in aqueous solutions. A combined AFM XPS and MAS NMR study. Clays and Clay Minerals 52, 432442.CrossRefGoogle Scholar
Aldushin, K. Jordan, G. Rammensee, W. Schmahl, W.W. and Becker, H.W., 2004b Apophyllite (001) surface alteration in aqueous solutions studied by HAFM Geochimica et Cosmochimica Acta 68 217226.CrossRefGoogle Scholar
Amorim, C.L.G. Lopes, R.T. Barroso, R.C. Queiroz, J.C. Alves, D.B. Perez, C.A. and Schelin, H.R., 2007 Effect of clay-water interactions on clay swelling by X-ray diffraction Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment 580 768770.CrossRefGoogle Scholar
Anderson, R.L. Ratcliffe, I. Greenwell, H.C. Williams, P.A. Cliffe, S. and Coveney, P.V., 2010 Clay swelling - A challenge in the oilfield Earth-Science Reviews 98 201216.CrossRefGoogle Scholar
Andrews, D.E. Schmidt, P.W. and Van Olphen, H., 1967 X-ray study of interactions between montmorillonite platelets Clays and Clay Minerals 15 321330.CrossRefGoogle Scholar
Baker, J.C. Grabowskaolszewska, B. and Uwins, P.J.R., 1995 ESEM Study of osmotic swelling of bentonite from Radzionkow (Poland) Applied Clay Science 9 465469.CrossRefGoogle Scholar
Balnois, E. Durand-Vidal, S. and Levitz, P., 2003 Probing the morphology of laponite clay colloids by atomic force microscopy Langmuir 19 66336637.CrossRefGoogle Scholar
Berend, I. Cases, J.M. Francois, M. Uriot, L.M. Masion, A. and Thomas, F., 1995 Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites. 2. The Li+, Na+, K+, Rb+ and Cs+-exchanged forms Clays and Clay Minerals 43 324336.CrossRefGoogle Scholar
Bickmore, B.R. Hochella, M.F. Bosbach, D. and Charlet, L., 1999 Methods for performing atomic force microscopy imaging of clay minerals in aqueous solution Clays and Clay Minerals 47 573581.CrossRefGoogle Scholar
Bickmore, B.R. Bosbach, D. Hochella, M.F. Jr Charlet, L. and Rufe, E., 2001 In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms American Mineralogist 86 411423.CrossRefGoogle Scholar
Bickmore, B.R. Nagy, K.L. Sandlin, P.E. and Crater, T.S., 2002 Quantifying surface areas of clays by atomic force microscopy American Mineralogist 87 780783.CrossRefGoogle Scholar
Bihannic, I. Michot, L.J. Lartiges, B.S. Vantelon, D. Labille, J. Thomas, F. Susini, J. Salome, M. and Fayard, B., 2001a First direct visualization of oriented mesostructures in clay gels by synchrotron-based X-ray fluorescence microscopy Langmuir 17 41444147.CrossRefGoogle Scholar
Bihannic, I. Tchoubar, D. Lyonnard, S. Besson, G. and Thomas, F., 2001b X-ray scattering investigation of swelling clay fabric 1 The dry state. Journal of Colloid and Interface Science 240 211218.CrossRefGoogle Scholar
Bihannic, I. Delville, A. Demé, B. Plazanet, M. Villiéras, F. Michot, L.J., Liyuan, L. Rinaldi, R. and Schober, H., 2008 Clay swelling: New insights from neutron-based techniques Neutron Applications in Earth, Energy and Environmental Sciences New York Springer 521546.Google Scholar
Boek, E.S. Coveney, P.V. and Skipper, N.T., 1995 Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: Understanding the role of potassium as a clay swelling inhibitor Journal of the American Chemical Society 117 1260812617.CrossRefGoogle Scholar
Bouazza, A. Bowders, J.J. Jr, 2010 Geosynthetic Clay Liners for Waste Containment Facilities Boca Raton, Florida, USA CRC Press.Google Scholar
Brandt, F. Bosbach, D. Krawczyk-Barsch, E. Arnold, T. and Bernhard, G., 2003 Chlorite dissolution in the acid pHrange: A combined microscopic and macroscopic approach Geochimica et Cosmochimica Acta 67 14511461.CrossRefGoogle Scholar
Bray, H.J. Redfern, S.A.T. and Clark, S.M., 1998 The kinetics of dehydration in Ca-montmorillonite: an in situ X-ray diffraction study Mineralogical Magazine 62 647656.CrossRefGoogle Scholar
Brunauer, S. Emmett, P.H. and Teller, E., 1938 Adsorption of gases in multimolecular layers Journal of the American Chemical Society 60 309319.CrossRefGoogle Scholar
Cadene, A. Durand-Vidal, S. Turq, P. and Brendle, J., 2005 Study of individual Na-montmorillonite particles size, morphology, and apparent charge Journal of Colloid and Interface Science 285 719730.CrossRefGoogle ScholarPubMed
Can, M.F. Cinar, M. Benli, B. Ozdemir, O. and Celik, M.S., 2010 Determining the fiber size of nano structured sepiolite using atomic force microscopy (AFM) Applied Clay Science 47 217222.CrossRefGoogle Scholar
Cases, C.M. Berend, I. Besson, G. Francois, M. Uriot, J.P. Thomas, F. and Poirier, J.E., 1992 Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite 1. The sodium-exchanged form. Langmuir 8 27302739.Google Scholar
Cebula, D.J. and Thomas, R.K., 1980 Small angle neutron scattering from dilute aqueous dispersions of clay Journal of the Chemical Society, Faraday Transactions I, 76, 314321.CrossRefGoogle Scholar
Chappell, M.A. Laird, D.A. Thompson, M.L. Li, H. Teppen, B.J. Aggarwal, V. Johnston, C.T. and Boyd, S.A., 2005 Influence of smectite hydration and swelling on atrazine sorption behavior Environmental Science & Technology 39 31503156.CrossRefGoogle ScholarPubMed
Charlet, L. Bosbach, D. and Peretyashko, T., 2002 Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe(II): an AFM study Chemical Geology 190 303319.CrossRefGoogle Scholar
Chatterjee, R. Laird, D.A. and Thompson, M.L., 2008 Interactions among K+-Ca2+ exchange, sorption of mdinitrobenzene, and smectite quasicrystal dynamics Environmental Science & Technology 42 90999103.CrossRefGoogle ScholarPubMed
Cuadros, J. and Altaner, S.P., 1998 Characterization of mixed-layer illite-smectite from bentonites using microscopic, chemical, and X-ray methods: Constraints on the smectite-to-illite transformation mechanism American Mineralogist 83 762774.CrossRefGoogle Scholar
De Stefanis, A. Tomlinson, A.A.G. Steriotis, T.h.A. Charalambopoulou, G.C.h. and Keiderling, U., 2007 Study of structural irregularities of smectite clay systems by small-angle neutron scattering and adsorption Applied Surface Science 253 56335639.CrossRefGoogle Scholar
Durand, C. Forsans, T. Ruffet, C. Onaisi, A. and Audibert, A., 1995 Influence of clays on borehole stability — a literature survey 1. Occurrence of drilling problems physicochemical description of clays and of their interaction with fluids. Revue De L Institut Francais Du Petrole 50 187218.Google Scholar
Faisandier, K. Pons, C.H. Tchoubar, D. and Thomas, F., 1998 Structural organization of Na- and K-montmorillonite suspensions in response to osmotic and thermal stresses Clays and Clay Minerals 46 636648.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. and Drits, V.A., 2005 Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I Montmorillonite hydration properties. American Mineralogist 90 13581374.Google Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. Geoffroy, N. Jacquot, E. and Drits, V.A., 2007 Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction profiles: Influence of layer charge and charge location American Mineralogist 92 17311743.CrossRefGoogle Scholar
Gan, H. Bailey, G.W. and Yu, Y.S., 1996 Morphology of lead(II) and chromium(III) reaction products on phyllosilicate surfaces as determined by atomic force microscopy Clays and Clay Minerals 44 734743.CrossRefGoogle Scholar
Gates, W.P. Slade, P.G. Manceau, A. and Lanson, B., 2002 Site occupancies by iron in nontronites Clays and Clay Minerals 50 223239.CrossRefGoogle Scholar
Geramian, M. Osacky, M. Ivey, D.G. Liu, Q. and Etsell, T.H., 2016 Effect of swelling clay minerals (montmorillonite and illite-smectite) on non-aqueous bitumen extraction from Alberta oil sands Energy & Fuels 30 80838090.CrossRefGoogle Scholar
Gupta, V. Hampton, M.A. Nguyen, A.V. and Miller, J.D., 2010 Crystal lattice imaging of the silica and alumina faces of kaolinite using atomic force microscopy Journal of Colloid and Interface Science 352 7580.CrossRefGoogle ScholarPubMed
Hassan, M.S. Villieras, F. Gaboriaud, F. and Razafitianamaharavo, A., 2006 AFM and low-pressure argon adsorption analysis of geometrical properties of phyllosilicates Journal of Colloid and Interface Science 296 614623.CrossRefGoogle Scholar
Hight, R Jr Higdon, W.T. Darley, H.C.H. and Schmidt, P.W., 1962 Small angle X-ray scattering from montmorillonite clay suspensions Journal of Chemical Physics 37 502510.CrossRefGoogle Scholar
Hochella, M.F. Rakovan, J.F. Rosso, K.M. Bickmore, B.R. Rufe, E., Sparks, D.L. and Grundl, T.J., 1998 New directions in mineral surface geochemical research using scanning probe microscopes Mineral-Water Interfacial Reactions Washington, D.C. American Chemical Society 3756.Google Scholar
Horcas, I. Fernández, R. Gómez-Rodríguez, J. M. Colchero, J. Gómez-Herrero, J. and Baro, A. M., 2007 WSXM: A software for scanning probe microscopy and a tool for nanotechnology Review of Scientific Instruments 78 1 013705.CrossRefGoogle Scholar
Jullien, M. Raynall, J. Kohler, E. and Bildstein, O., 2005 Physiochemical reactivity in clay-rich materials: Tools for safety assessment Oil & Gas Science and Technology 60 107120.CrossRefGoogle Scholar
Komadel, P. Hrobarikova, J. Smrcok, L. and Koppelhuber-Bitschnau, B., 2002 Hydration of reduced-charge montmorillonite Clay Minerals 37 543550.CrossRefGoogle Scholar
Krekeler, M.P.S. Guggenheim, S. and Rakovan, J., 2004 A microtexture study of palygorskite-rich sediments from the Hawthorne Formation, southern Georgia, by transmission electron microscopy and atomic force microscopy Clays and Clay Minerals 52 263274.CrossRefGoogle Scholar
Krekeler, M.P.S. Hammerly, E. Rakovan, J. and Guggenheim, S., 2005 Microscopy studies of the palygorskite-to-smectite transformation Clays and Clay Minerals 53 9299.CrossRefGoogle Scholar
Kuwahara, Y., 2008 In situ observations of muscovite dissolution under alkaline conditions at 25–50 degrees C by AFM with an air/fluid heater system American Mineralogist 93 10281033.CrossRefGoogle Scholar
Likos, W.J. and Lu, N., 2006 Pore-scale analysis of bulk volume change from crystalline interlayer swelling in Na+- and Ca2+-smectite Clays and Clay Minerals 54 515528.CrossRefGoogle Scholar
Likos, W.J. and Wayllace, A., 2010 Porosity evolution of free and confined bentonites during interlayer hydration Clays and Clay Minerals 58 399414.CrossRefGoogle Scholar
Lindgreen, H. Garnaes, J. Hansen, P.L. Besenbacher, F. Laegsgaard, E. Stensgaard, I. Gould, S.A.C. and Hansma, P.K., 1991 Ultrafine particles of North Sea illite-smectite clay investigated by STM and AFM American Mineralogist 76 12181222.Google Scholar
Lindgreen, H. Drits, V.A. Sakharov, B.A. Jakobsen, H.J. Salyn, A.L. Dainyak, L.G. and Kroyer, H., 2002 The structure and diagenetic transformation of illite-smectite and chlorite-smectite from North Sea Cretaceous-Tertiary chalk Clay Minerals 37 429450.CrossRefGoogle Scholar
MacEwan, D.M.C. Wilson, M.J., Brindley, G.W. and Brown, G., 1980 Interlayer and intercalation complexes of clay minerals Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 197248.CrossRefGoogle Scholar
Marty, N.C.M. Cama, J. Sato, T. Chino, D. Villieras, F. Razafitianamaharavo, A. Brendle, J. Giffaut, E. Soler, J.M. Gaucher, E.C. and Tournassat, C., 2011 Dissolution kinetics of synthetic Na-smectite An integrated experimental approach. Geochimica et Cosmochimica Acta 75 58495864.CrossRefGoogle Scholar
Massat, L. Cuisinier, O. Bihannic, I. Claret, F. Pelletier, M. Masrouri, F. and Gaboreau, S., 2016 Swelling pressure development and inter-aggregate porosity evolution upon hydration of a compacted swelling clay Applied Clay Science 124-125 197210.CrossRefGoogle Scholar
Maurice, P.A., 1996 Applications of atomic force microscopy in environmental colloid and surface chemistry Colloids and Surfaces A 107 5775.CrossRefGoogle Scholar
Maurice, P.A., Sparks, D.L. and Grundl, T.J., 1998 Atomic force microscopy as a tool for studying the reactivities of environmental particles Mineral-Water Interfacial Reactions Washington, D.C. American Chemical Society 5766.Google Scholar
Metz, V. Raanan, H. Pieper, H. Bosbach, D. and Ganor, J., 2005 Towards the establishment of a reliable proxy for the reactive surface area of smectite Geochimica et Cosmochimica Acta 69 25812591.CrossRefGoogle Scholar
Michot, L.J. Bihannic, I. Pelletier, M. Rinnert, E. and Robert, J.L., 2005 Hydration and swelling of synthetic Nasaponi tes: Influence of layer charge American Mineralogist 90 166172.CrossRefGoogle Scholar
Michot, L.J. Bihannic, I. Maddi, S. Funari, S.S. Baravian, C. and Levitz, P., 2006 Liquid-crystalline aqueous clay suspensions Proceedings of the National Academy of Sciences 103 1610116104.CrossRefGoogle ScholarPubMed
Michot, L.J. Bihannic, I. Thomas, F. Lartiges, B.S. Waldvogel, Y. Caillet, C. Thieme, J. Funari, S.S. and Levitz, P., 2013a Coagulation of Na-montmorillonite by inorganic cations at neutral pH. A combined transmission X-ray microscopy, small angle and wide angle X-ray scattering study. Langmuir, 29, 35003510.CrossRefGoogle Scholar
Michot, L.J. Paineau, E. Bihannic, I. Maddi, S. Duval, J.F.L. Baravian, C. Davidson, P. and Levitz, P., 2013b Isotropic/nematic and sol/gel transitions in aqueous suspensions of size selected NAu1 Clay Minerals 48 663685.CrossRefGoogle Scholar
Morodome, S. and Kawamura, K., 2009 Swelling behavior of Na- and Ca-montmorillonite up to 150 degrees by in situ X-ray diffraction experiments Clays and Clay Minerals 57 150160.CrossRefGoogle Scholar
Morodome, S. and Kawamura, K., 2011 In situ X-ray diffraction study of the swelling of montmorillonite as affected by exchangeable cations and temperature Clays and Clay Minerals 59 165175.CrossRefGoogle Scholar
Morvan, M. Espinat, D. Lambard, J. and Zemb, T.h., 1994 Ultrasmall- and small-angle X-ray scattering of smectite clay suspensions Colloids and Surfaces A 82 193203.CrossRefGoogle Scholar
Norrish, K., 1954 The swelling of montmorillonite Discussions of the Faraday Society 18 120133.CrossRefGoogle Scholar
Norrish, K. and Quirk, J.P., 1954 Crystalline swelling of montmorillonite — use of electrolytes to control swelling Nature 173 255256.CrossRefGoogle Scholar
Norrish, K. and Rausell-Colom, J.A., 1963 Low-angle X-ray diffraction studies of the swelling of montmorillonite and vermiculite Proceedings of the 10th National Conference on Clays and Clay Minerals 123149.CrossRefGoogle Scholar
Paumier, S. Pantet, A. and Monnet, P., 2008 Evaluation of the organization of the homoionic smectite layers (Na+ or Ca2+) in diluted dispersions using granulometry, microscopy and rheometry Advances in Colloid and Interface Science 141 6675.CrossRefGoogle ScholarPubMed
Paineau, E. Bihannic, I. Baravian, C. Philippe, A.M. Davidson, P. Levitz, Funari, S.S. Rochas, C. and Michot, L.J., 2011 Aqueous suspensions of natural swelling clay minerals 1. Structure and electrostatic interactions. Langmuir 27 55625573.Google ScholarPubMed
Piner, R.D. Xu, T.T. Fisher, F.T. Qiao, Y. and Ruoff, R.S., 2003 Atomic force microscopy study of clay nanoplatelets and their impurities Langmuir 19 79958001.CrossRefGoogle Scholar
Plaschke, M. Schafer, T. Bundschuh, T. Manh, T.N. Knopp, R. Geckeis, H. and Kim, J.I., 2001 Size characterization of bentonite colloids by different methods Analytical Chemistry 73 43384347.CrossRefGoogle ScholarPubMed
Ploehn, H.J. and Liu, C., 2006 Quantitative analysis of montmorillonite platelet size by atomic force microscopy Industrial & Engineering Chemistry Research 45 70257034.CrossRefGoogle Scholar
Pons, C.H. Rousseaux, F. and Tchoubar, D., 1981 Use of synchrotron radiation small-angle diffusion for the study of swelling of smectites 1 Study of the water-Na-montmorillonite system as a function of temperature Clay Minerals 16 2342.CrossRefGoogle Scholar
Pons, C.H. Rousseaux, F. and Tchoubar, D., 1982 Use of synchrotron radiation small-angle diffusion for the study of swelling of smectites 2. Study of different water-smectite systems as a function of temperature Clay Minerals 17 327338.CrossRefGoogle Scholar
Posner, A.M and Quirk, J.P, 1964 Changes in basal spacing of montmorillonite in electrolyte solutions Journal of Colloid Science 19 9 798812.CrossRefGoogle Scholar
Pusch, R., 2008 Geological Storage of Highly Radioactive Waste: Current Concepts and Plans Berlin Springer.CrossRefGoogle Scholar
Rausell-Colom, J.A. and Norrish, K., 1962 Low-angle diffractometer for studying the swelling of clay minerals Journal of Scientific Instruments 39 156159.CrossRefGoogle Scholar
Rufe, E. and Hochella, M.F., 1999 Quantitative assessment of reactive surface area of phlogopite during acid dissolution Science 285 874876.CrossRefGoogle ScholarPubMed
Salles, F. Beurroies, I. Bildstein, O. Jullien, M. Raynal, J. Denoyel, R. and Van Damme, H., 2008 A calorimetric study of mesoscopic swelling and hydration sequence in solid Na-montmorillonite Applied Clay Science 39 186201.CrossRefGoogle Scholar
Salles, F. Douillard, J.M. Denoyel, R. Bildstein, O. Jullien, M. Beurroies, I. and Van Damme, H., 2009 Hydration sequence of swelling clays: Evolution of specific surface area and hydration energy Journal of Colloid and Interface Science 333 510522.CrossRefGoogle ScholarPubMed
Salles, F. Bildstein, O. Douillard, J.M. Jullien, M. and Van Raynal, J D ^H, 2010 On the cation dependence of interlamellar and interparticular water and swelling in smectite clays Langmuir 26 50285037.CrossRefGoogle ScholarPubMed
Sarid, D., 1994 Scanning Force Microscopy: with Applications to Electric, Magnetic, and Atomic Forces New York Oxford.CrossRefGoogle Scholar
Segad, M. Jönsson, B. Åkesson, T. and Cabane, B., 2010 Ca/Na montmorillonite: structure, forces, and swelling properties Langmuir 26 57825790.CrossRefGoogle ScholarPubMed
Segad, M. Hanski, S. Olsson, U. Ruokolainen, J. Akesson, T. and Jonsson, B., 2012 Microstructural and swelling properties of Ca and Na montmorillonite: (in situ) observations with cryo-TEM and SAXS Journal of Physical Chemistry C 116 75967601.CrossRefGoogle Scholar
Slade, P.G. Quirk, J.P. and Norrish, K., 1991 Crystalline swelling of smectite samples in concentrated NaCl solutions in relation to layer charge Clays and Clay Minerals 39 234238.CrossRefGoogle Scholar
Sparks, D.L., 2003 Environmental Soil Chemistry 2 San Diego, California, USA Elsevier.CrossRefGoogle Scholar
Suzuki, S. Prayongphan, S. Ichikawa, Y. and Chae, B.G., 2005 In situ observations of the swelling of bentonite aggregates in NaCl solution Applied Clay Science 29 8998.CrossRefGoogle Scholar
Tessier, D., DeBoodt, M.F. Hayes, M.H.B. and Herbillon, A., 1990 Behaviour and microstructure of clay minerals Soil Colloids and Their Associations in Aggregates New York Plenum 387415.CrossRefGoogle Scholar
Tournassat, C. Neaman, A. Villieras, F. Bosbach, D. and Charlet, L., 2003 Nanomorphology of montmorillonite particles: Estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations American Mineralogist 88 19891995.CrossRefGoogle Scholar
Vaniman, D., 2001 Environmental Restoration Project Standard Operating Procedure for Clay Mineral and Zeolite Separation Los Alamos, New Mexico, USA Los Alamos National Laboratory.Google Scholar
Yokoyama, S. Kuroda, M. and Sato, T., 2005 Atomic force microscopy study of montmorillonite dissolution under highly alkaline conditions Clays and Clay Minerals 53 147154.CrossRefGoogle Scholar
Zbik, M.S. Martens, W.N. Frost, R.L. Song, Y. Chen, Y. and Chen, J., 2008 Transmission X-ray microscopy (TXM) reveals the nanostructure of a smectite gel Langmuir 24 89548958.CrossRefGoogle ScholarPubMed
Zbik, M.S. Martens, W.N. Frost, R.L. Song, Y. Chen, Y. and Chen, J., 2010 Smectite flocculation structure modified by Al13 macro-molecules — As revealed by the transmission X-ray microscopy (TXM) Journal of Colloid and Interface Science 345 3440.CrossRefGoogle ScholarPubMed
Zhang, F.S. Low, P.F. and Roth, C.B., 1995 Effects of monovalent, exchangeable cations and electrolytes on the relation between swelling pressure and interlayer distance in montmorillonite Journal of Colloid and Interface Science 173 3441.CrossRefGoogle Scholar