Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-15T01:57:36.915Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulation of Pore-Size Effects on Gas Adsorption Kinetics in Zeolites

Published online by Cambridge University Press:  01 January 2024

Jeffery A. Greathouse
Affiliation:
Nuclear Waste Disposal Research & Analysis Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
Matthew J. Paul
Affiliation:
Nuclear Waste Disposal Research & Analysis Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
Guangping Xu
Affiliation:
Geochemistry Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
Matthew D. Powell
Affiliation:
Geochemistry Department, Sandia National Laboratories, Albuquerque, NM 87185, USA

Abstract

Strong gas-mineral interactions or slow adsorption kinetics require a molecular-level understanding of both adsorption and diffusion for these interactions to be properly described in transport models. In this combined molecular simulation and experimental study, noble gas adsorption and mobility is investigated in two naturally abundant zeolites whose pores are similar in size (clinoptilolite) and greater than (mordenite) the gas diameters. Simulated adsorption isotherms obtained from grand canonical Monte Carlo simulations indicate that both zeolites can accommodate even the largest gas (Rn). However, gas mobility in clinoptilolite is significantly hindered at pore-limiting window sites, as seen from molecular dynamics simulations in both bulk and slab zeolite models. Experimental gas adsorption isotherms for clinoptilolite confirm the presence of a kinetic barrier to Xe uptake, resulting in the unusual property of reverse Kr/Xe selectivity. Finally, a kinetic model is used to fit the simulated gas loading profiles, allowing a comparison of trends in gas diffusivity in the zeolite pores.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackley, M. W., Yang, R. T. Diffusion in ion-exchanged clinoptilolites AIChE Journal 1991 37 16451656 10.1002/aic.690371107CrossRefGoogle Scholar
Allen, M. P., Tildesley, D. J. Computer simulation of liquids 1987 Clarendon PressGoogle Scholar
Aqvist, J. Ion-water interaction potentials derived from free energy perturbation simulations Journal of Physical Chemistry 1990 94 80218024 10.1021/j100384a009CrossRefGoogle Scholar
Barrer, R. M. Transient flow of gases in sorbents providing uniform capillary networks of molecular dimensions Transactions of the Faraday Society 1949 45 358373 10.1039/tf9494500358CrossRefGoogle Scholar
Beerdsen, E., Smit, B., Dubbeldam, D. Molecular simulation of loading dependent slow diffusion in confined systems Physical Review Letters 2004 93 248301 10.1103/PhysRevLett.93.248301CrossRefGoogle ScholarPubMed
Bourg, I. C., Beckingham, L. E., DePaolo, D. J. The nanoscale basis of co2 trapping for geologic storage Environmental Science & Technology 2015 49 1026510284 10.1021/acs.est.5b03003CrossRefGoogle ScholarPubMed
Buttefey, S., Boutin, A., Mellot-Draznieks, C., & Fuchs, A. H. (2001). A simple model for predicting the Na+ distribution in anhydrous NaY and NaX zeolites. The Journal of Physical Chemistry B, 105, 95699575.CrossRefGoogle Scholar
Carrigan, C. R., Heinle, R. A., Hudson, G. B., Nitao, J. J., Zucca, J. J. Trace gas emissions on geological faults as indicators of underground nuclear testing Nature 1996 382 528531 10.1038/382528a0CrossRefGoogle Scholar
Carrigan, C. R., Sun, Y., Antoun, T. Evaluation of subsurface transport processes of delayed gas signatures applicable to underground nuclear explosions Scientific Reports 2022 12 13169 10.1038/s41598-022-16918-5CrossRefGoogle ScholarPubMed
Coudert, F. X., Cailliez, F., Vuilleumier, R., Fuchs, A. H., Boutin, A. Water nanodroplets confined in zeolite pores Faraday Discussions 2009 141 377398 10.1039/B804992KCrossRefGoogle ScholarPubMed
Crank, J. (1948). XlV. A diffusion problem in which the amount of diffusing substance is finite. IV. Solutions for small values of the time. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39, 362376.CrossRefGoogle Scholar
Crank, J. The mathematics of diffusion 1975 Oxford University PressGoogle Scholar
Dang, L. X. Mechanism and thermodynamics of ion selectivity in aqueous solutions of 18-crown-6 ether: A molecular dynamics study Journal of the American Chemical Society 1995 117 69546960 10.1021/ja00131a018CrossRefGoogle Scholar
Di Lella, A., Desbiens, N., Boutin, A., Demachy, I., Ungerer, P., Bellat, J. P., Fuchs, A. H. Molecular simulation studies of water physisorption in zeolites Physical Chemistry Chemical Physics 2006 8 53965406 10.1039/b610621hCrossRefGoogle ScholarPubMed
Dubbeldam, D., Beerdsen, E., Vlugt, TJH, Smit, B. Molecular simulation of loading-dependent diffusion in nanoporous materials using extended dynamically corrected transition state theory Journal of Chemical Physics 2005 122 224712 10.1063/1.1924548CrossRefGoogle ScholarPubMed
Dutta, R. C., Bhatia, S. K. Interfacial barriers to gas transport in zeolites: Distinguishing internal and external resistances Physical Chemistry Chemical Physics 2018 20 2638626395 10.1039/C8CP05834BCrossRefGoogle ScholarPubMed
Dutta, R. C., Bhatia, S. K. Interfacial barriers to gas transport: Probing solid-gas interfaces at the atomistic level Molecular Simulation 2019 45 11481162 10.1080/08927022.2019.1635694CrossRefGoogle Scholar
Feldman, J., Paul, M., Xu, G., Rademacher, D. X., Wilson, J., Nenoff, T. M. Effects of natural zeolites on field-scale geologic noble gas transport Journal of Environmental Radioactivity 2020 220–221 106279 10.1016/j.jenvrad.2020.106279CrossRefGoogle ScholarPubMed
Geng, L., Li, G., Zitha, P., Tian, S., Sheng, M., Fan, X. A diffusion–viscous flow model for simulating shale gas transport in nano-pores Fuel 2016 181 887894 10.1016/j.fuel.2016.05.036CrossRefGoogle Scholar
Greathouse, J. A., Hart, D. B., Bowers, G. M., Kirkpatrick, R. J., Cygan, R. T. Molecular simulation of structure and diffusion at smectite–water interfaces: Using expanded clay interlayers as model nanopores Journal of Physical Chemistry C 2015 119 1712617136 10.1021/acs.jpcc.5b03314CrossRefGoogle Scholar
Greathouse, J. A., Cygan, R. T., Fredrich, J. T., Jerauld, G. R. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers The Journal of Physical Chemistry C 2016 120 16401649 10.1021/acs.jpcc.5b10851CrossRefGoogle Scholar
Green, C. T., Luo, W., Conaway, C. H., Haase, K. B., Baker, R. J., Andraski, B. J. Spatial fingerprinting of biogenic and anthropogenic volatile organic compounds in an arid unsaturated zone Vadose Zone Journal 2019 18 190047 10.2136/vzj2019.05.0047CrossRefGoogle Scholar
Guo, S. Y., Yu, C. L., Gu, X. H., Jin, W. Q., Zhong, J., Chen, C. L. Simulation of adsorption, diffusion, and permeability of water and ethanol in naa zeolite membranes Journal of Membrane Science 2011 376 4049 10.1016/j.memsci.2011.03.043CrossRefGoogle Scholar
Han, K. N., Bernardi, S., Wang, L. Z., Searles, D. J. Water structure and transport in zeolites with pores in one or three dimensions from molecular dynamics simulations Journal of Physical Chemistry C 2017 121 381391 10.1021/acs.jpcc.6b10316CrossRefGoogle Scholar
Harvey, J. A., Thompson, W. H. Thermodynamic driving forces for dye molecule position and orientation in nanoconfined solvents Journal of Physical Chemistry B 2015 119 91509159 10.1021/jp509051nCrossRefGoogle ScholarPubMed
Hassanzadeh, A., & Sabzi, F. (2021). Prediction of CO2 and H2 solubility, diffusion, and permeability in MFI zeolite by molecular dynamics simulation. Structural Chemistry, 32, 16411650.CrossRefGoogle Scholar
Heinemann, N., Alcalde, J., Miocic, J. M., Hangx, SJT, Kallmeyer, J., Ostertag-Henning, C., Hassanpouryouzband, A., Thaysen, E. M., Strobel, G. J., Schmidt-Hattenberger, C., Edlmann, K., Wilkinson, M., Bentham, M., Haszeldine, R. S., Carbonell, R., Rudloff, A. Enabling large-scale hydrogen storage in porous media - the scientific challenges Energy & Environmental Science 2021 14 853864 10.1039/D0EE03536JCrossRefGoogle Scholar
Ho, T. A., Wang, Y. F. Pore size effect on selective gas transport in shale nanopores Journal of Natural Gas Science and Engineering 2020 83 103543 10.1016/j.jngse.2020.103543CrossRefGoogle Scholar
Ho, C. K., Webb, S. W. Gas transport in porous media 2006 Springer 10.1007/1-4020-3962-XCrossRefGoogle Scholar
Hsu, C. N., Tsai, S. C., Liang, S. M. Evaluation of diffusion parameters of radon in porous material by flow-through diffusion experiment Applied Radiation and Isotopes 1994 45 845850 10.1016/0969-8043(94)90215-1CrossRefGoogle Scholar
Inzoli, I., Simon, J-M, Kjelstrup, S. Surface adsorption isotherms and surface excess densities of n-butane in silicalite-1 Langmuir 2009 25 15181525 10.1021/la803181dCrossRefGoogle ScholarPubMed
Jayaraman, A., Yang, R. T., Chinn, D., Munson, C. L. Tailored clinoptilolites for nitrogen/methane separation Industrial & Engineering Chemistry Research 2005 44 51845192 10.1021/ie0492855CrossRefGoogle Scholar
Jeffroy, M., Boutin, A., & Fuchs, A. H. (2011). Understanding the equilibrium ion exchange properties in faujasite zeolite from Monte Carlo simulations. Journal of Physical Chemistry B, 115, 1505915066.CrossRefGoogle ScholarPubMed
Jeffroy, M., Nieto-Draghi, C., Boutin, A. Molecular simulation of zeolite flexibility Molecular Simulation 2014 40 615 10.1080/08927022.2013.840898CrossRefGoogle Scholar
Jeffroy, M., Nieto-Draghi, C., Boutin, A. New molecular simulation method to determine both aluminum and cation location in cationic zeolites Chemistry of Materials 2017 29 513523 10.1021/acs.chemmater.6b03011CrossRefGoogle Scholar
Jordan, A. B., Stauffer, P. H., Knight, E. E., Rougier, E., Anderson, D. N. Radionuclide gas transport through nuclear explosion-generated fracture networks Scientific Reports 2015 5 1 18383 10.1038/srep18383CrossRefGoogle ScholarPubMed
Karger, J., Ruthven, D. M. Diffusion in nanoporous materials: Fundamental principles, insights and challenges New Journal of Chemistry 2016 40 40274048 10.1039/C5NJ02836ACrossRefGoogle Scholar
Karra, S., Makedonska, N., Viswanathan, H. S., Painter, S. L., Hyman, J. D. Effect of advective flow in fractures and matrix diffusion on natural gas production Water Resources Research 2015 51 86468657 10.1002/2014WR016829CrossRefGoogle Scholar
Kennedy, D. A., Tezel, F. H. Cation exchange modification of clinoptilolite - screening analysis for potential equilibrium and kinetic adsorption separations involving methane, nitrogen, and carbon dioxide Microporous and Mesoporous Materials 2018 262 235250 10.1016/j.micromeso.2017.11.054CrossRefGoogle Scholar
Krishna, R. Diffusion in porous crystalline materials Chemical Society Reviews 2012 41 30993118 10.1039/c2cs15284cCrossRefGoogle ScholarPubMed
Kroutil, O., Nguyen, D. V., Volanek, J., Kucera, A., Predota, M., Vranova, V. Clinoptilolite/electrolyte interface probed by a classical molecular dynamics simulations and batch adsorption experiments Microporous and Mesoporous Materials 2021 328 111406 10.1016/j.micromeso.2021.111406CrossRefGoogle Scholar
Lawler, K. V., Sharma, A., Alagappan, B., Forster, P. M. Assessing zeolite frameworks for noble gas separations through a joint experimental and computational approach Microporous and Mesoporous Materials 2016 222 104112 10.1016/j.micromeso.2015.10.005CrossRefGoogle Scholar
Li, J. R., Kuppler, R. J., Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks Chemical Society Reviews 2009 38 14771504 10.1039/b802426jCrossRefGoogle ScholarPubMed
Li, J., Ullah, R., Jiao, J., Sun, J. H., Bai, S. Y. Ion exchange of cations from different groups with ammonium-modified clinoptilolite and selectivity for methane and nitrogen Materials Chemistry and Physics 2020 256 123760 10.1016/j.matchemphys.2020.123760CrossRefGoogle Scholar
Ma, Z. Y., Ranjith, P. G. Review of application of molecular dynamics simulations in geological sequestration of carbon dioxide Fuel 2019 255 115644 10.1016/j.fuel.2019.115644CrossRefGoogle Scholar
Mohammed, S., & Gadikota, G. (2020). Exploring the role of inorganic and organic interfaces on CO2 and CH4 partitioning: Case study of silica, illite, calcite, and kerogen nanopores on gas adsorption and nanoscale transport behaviors. Energy & Fuels, 34, 35783590.CrossRefGoogle Scholar
Murthy, V., Khosravi, M., Mackinnon, IDR Molecular modeling of univalent cation exchange in zeolite n Journal of Physical Chemistry C 2018 122 1080110810 10.1021/acs.jpcc.7b12241CrossRefGoogle Scholar
Nagumo, R., Takaba, H., Nakao, S. A methodology to estimate transport diffusivities in 'single-file' permeation through zeolite membranes using molecular simulations Journal of Chemical Engineering of Japan 2007 40 10451055 10.1252/jcej.07WE170CrossRefGoogle Scholar
Neil, C. W., Boukhalfa, H., Xu, H., Ware, S. D., Ortiz, J., Avendaño, S., Harp, D., Broome, S., Hjelm, R. P., Mao, Y., Roback, R., Brug, W. P., Stauffer, P. H. Gas diffusion through variably-water-saturated zeolitic tuff: Implications for transport following a subsurface nuclear event Journal of Environmental Radioactivity 2022 250 106905 10.1016/j.jenvrad.2022.106905CrossRefGoogle ScholarPubMed
Pellenq, R. J. M., & Levitz, P. E. (2002). Capillary condensation in a disordered mesoporous medium: A grand canonical Monte Carlo study. Molecular Physics, 100, 20592077.CrossRefGoogle Scholar
Perez-Carbajo, J., Dubbeldam, D., Calero, S., & Merkling, P. J. (2018). Diffusion patterns in zeolite MFI: The cation effect. Journal of Physical Chemistry C, 122, 2927429284.CrossRefGoogle Scholar
Perry, J. J., Teich-McGoldrick, S. L., Meek, S. T., Greathouse, J. A., Haranczyk, M., Allendorf, M. D. Noble gas adsorption in metal-organic frameworks containing open metal sites Journal of Physical Chemistry C 2014 118 1168511698 10.1021/jp501495fCrossRefGoogle Scholar
Plimpton, S. J., Pollock, R., & Stevens, M. (1997). Particle-mesh Ewald and rRESPA for parallel molecular dynamics simulations. Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN, USA.Google Scholar
Simoncic, P., Armbruster, T. Peculiarity and defect structure of the natural and synthetic zeolite mordenite: A single-crystal x-ray study American Mineralogist 2004 89 421431 10.2138/am-2004-2-323CrossRefGoogle Scholar
Simonnin, P., Marry, V., Noetinger, B., Nieto-Draghi, C., Rotenberg, B. Mineral- and ion-specific effects at clay-water interfaces: Structure, diffusion, and hydrodynamics Journal of Physical Chemistry C 2018 122 1848418492 10.1021/acs.jpcc.8b04259CrossRefGoogle Scholar
Slavova, S. O., Sizova, A. A., Sizov, V. V. Molecular dynamics simulation of carbon dioxide diffusion in naa zeolite: Assessment of surface effects and evaluation of bulk-like properties Physical Chemistry Chemical Physics 2020 22 2252922536 10.1039/D0CP04189KCrossRefGoogle ScholarPubMed
Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A., Sansom, MSP Hole: A program for the analysis of the pore dimensions of ion channel structural models Journal of Molecular Graphics & Modelling 1996 14 354360 10.1016/S0263-7855(97)00009-XCrossRefGoogle Scholar
Smirnov, K. S. A molecular dynamics study of the interaction of water with the external surface of silicalite-1 Physical Chemistry Chemical Physics 2017 19 29502960 10.1039/C6CP06770KCrossRefGoogle ScholarPubMed
Smyth, J. R., Spaid, A. T., & Bish, D. L. (1990). Crystal-structures of a natural and a Cs-exchanged clinoptilolite. American Mineralogist, 75, 522528.Google Scholar
Taghdisian, H., Tasharrofi, S., Firoozjaie, A. G., & Hosseinnia, A. (2019). Loading-dependent diffusion of SO2 in 13x and 5a using molecular dynamics: Effects of extraframework ions and topology. Journal of Chemical and Engineering Data, 64, 30923104.CrossRefGoogle Scholar
Teleman, O., Jonsson, B., Engstrom, S. A molecular dynamics simulation of a water model with intramolecular degrees of freedom Molecular Physics 1987 60 193203 10.1080/00268978700100141CrossRefGoogle Scholar
Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., in’t Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, C., & Plimpton, S. J. (2022). LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171.CrossRefGoogle Scholar
Trucano, P., Chen, R. Structure of graphite by neutron diffraction Nature 1975 258 136137 10.1038/258136a0CrossRefGoogle Scholar
Uzunova, E. L., Mikosch, H. Cation site preference in zeolite clinoptilolite: A density functional study Microporous and Mesoporous Materials 2013 177 113119 10.1016/j.micromeso.2013.05.003CrossRefGoogle Scholar
van Loef, J. J. On the thermo-physical properties of liquid rn 222 Physica B & C 1981 103 362364 10.1016/0378-4363(81)90143-1CrossRefGoogle Scholar
Viswanadham, N., Kumar, M. Effect of dealumination severity on the pore size distribution of mordenite Microporous and Mesoporous Materials 2006 92 3137 10.1016/j.micromeso.2005.07.049CrossRefGoogle Scholar
Wendling, J., Justinavicius, D., Sentis, M., Amaziane, B., Bond, A., Calder, N. J., Treille, E. Gas transport modelling at different spatial scales of a geological repository in clay host rock Environmental Earth Sciences 2019 78 221 10.1007/s12665-019-8230-3CrossRefGoogle Scholar
Wilson, A. H. V. A diffusion problem in which the amount of diffusing substance is finite The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1948 39 4858 10.1080/14786444808561166CrossRefGoogle Scholar
Yu, H., Xu, H., Fan, J., Wang, F., Wu, H. Roughness factor-dependent transport characteristic of shale gas through amorphous kerogen nanopores The Journal of Physical Chemistry C 2020 124 1275212765 10.1021/acs.jpcc.0c02456CrossRefGoogle Scholar
Yu, Y., Li, X., Min, X., Shang, M., Tao, P., & Sun, T. (2022). Influences of channel morphology and brønsted acidity on ETS-10, ZSM-5, and SSZ-13 for xenon and krypton separation. Journal of Environmental Chemical Engineering, 10, 106982.CrossRefGoogle Scholar
Zhang, T., Sun, S. Y. A coupled lattice boltzmann approach to simulate gas flow and transport in shale reservoirs with dynamic sorption Fuel 2019 246 196203 10.1016/j.fuel.2019.02.117CrossRefGoogle Scholar
Supplementary material: File

Greathouse et al. supplementary material
Download undefined(File)
File 1.8 MB