Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-18T05:23:01.406Z Has data issue: false hasContentIssue false

Mössbauer, Thermomagnetic, and X-Ray Study of Cation Ordering and High-Temperature Decomposition in Biotite

Published online by Cambridge University Press:  01 July 2024

V. I. Bagin
Affiliation:
Institute of Geophysics, Academy of Sciences, Moscow, U.S.S.R.
T. S. Gendler
Affiliation:
Institute of Geophysics, Academy of Sciences, Moscow, U.S.S.R.
L. G. Dainyak
Affiliation:
Geological Institute, Academy of Sciences, Moscow, U.S.S.R.
R. N. Kuz'min
Affiliation:
Moscow State University, Moscow, U.S.S.R.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To explain the large values of the quadrupole splittings and line widths in the Mössbauer spectrum of oxybiotite, a formalized analysis of the distribution of effective charges in the anion network was conducted using an idealized model of the biotite octahedral layer. Based on this analysis, a qualitative physical model has been proposed, according to which the Mössbauer spectrum consists of a superposition of six quadrupole doublets. The proposed model explains the appearance of residual magnetization well below the biotite decomposition temperature. Annealing the biotite at 1070°K leads to the formation of nuclei of the magnetic phase in chains consisting of R3+ and vacancies. This phase is the decomposition product of biotite at 1370°K, i.e., a ferrispinel having Fe2−xMgAlxO4 (x = 0.5–0.6) composition.

Резюме

Резюме

Для объяснения больших значений квадрупольного расщепления и полуширины линии в Мессбауэровском спектре оксибиотита, в данной работе проводится анализ распределения формальных эффективных зарядов в узлах анионной сетки для идеализированной модели октаэдрического слоя биотита. На основе этого анализа предлагается физическая модель, согласно которой мессбауэровский спектр оксибиотита представляет собой суперпозицию шести дублетов квадрупольного расщепления. Предложенная модель позволяет объяснить возникновение остаточной намагниченности задолго до температуры распада биотита. Отжиг биотита при 1070°К приводит к образованию зародышей магнитной фазы в цепочках, состоящих из R3+ и вакансий, являющейся продуктом распада биотита при 1370°К.

Resümee

Resümee

Um die großen Werte der Quadrupol-Aufspaltung und der Linienbreiten im Mössbauerspektrum von Oxybiotit zu erklären, wurde unter Verwendung eines idealisierten Modells der Biotit-Oktaederschicht eine formalisierte Analyse der Verteilung der effektiven Ladungen im Anionen-Netzwerk durchgeführt. Aufgrund dieser Analyse wurde ein qualitatives physikalisches Modell vorgeschlagen, nach dem das Mössbauerspektrum aus einer Überlagerung von 6 Quadrupol Dubletten besteht. Das vorgeschlagene Modell erklärt das Auftreten von Restmagnetisierung weit unter der Zersetzungstemperatur des Biotits. Glüht man den Biotit bei 1070°K, so führt das zur Bildung von Keimen der magnetischen Phase in Ketten, die aus R3+ und Leerstellen bestehen. Diese Phase ist das Zersetzungsprodukt von Biotit bei 1370°K, d.h. einem Fer- rispinell mit der Zusammensetzung Fe2-xMgAlxO4 (x = 0,5–0,6). [U.W.]

Résumé

Résumé

Pour expliquer les valeurs élevées des scissions quadrupolaires et des largeurs des droites dans le spectre de Mössbauer de l'oxybiotite, une analyse formalisée de la distribution de charges éffectives dans le circuit des anions a été faite, utilisant un modèle idéalisé de la couche octaédrique de la biotite. Sur la base de cette analyse, un modèle physique qualitatif a été proposé, selon lequel le spectre de Mössbauer consiste en une superposition de six doublets quadrupolaires. Le modèle proposé explique l'apparition de magnétisation résiduelle bien en dessous de la température de décomposition de la biotite. Si on tempère la biotite à 1070°K, on obtient la formation de noyaux de la phase magnétique en chaînes consistant de R3+ et de vides. Cette phase est le produit de décomposition de la biotite à 1370°K, c.à.d., un ferrispinel de composition Fe2-xMgAlxO4 (x = 0.5–0.6). [D.J.]

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1980

References

Annersten, H., (1974) Mössbauer studies of natural biotite Amer. Mineral. 59 143151.Google Scholar
Bagin, V. I. Gendler, T. S. Daihyak, L. G. and Sukhorada, A. V., (1976) Temperature transformation in biotite Izv. Akad. Nauk SSSR Fiz. Zemli 9 6676.Google Scholar
Belov, V. F. Val’yashikhina, E. P. Vlasov, E. V. Dolomanova, E. I. Korovushkin, V. V. Lomeev, E. V. Podol’skiy, A. M. Pyl’nev, V. G. and Khimich, T. A., (1974) Influence of thermal and mechanical effects on composition and structure of iron chlorites (based on data of Mössbauer spectroscopy) Izv. Vyssh, Ucheb. Zaved. Geol. Radved. 8 5059.Google Scholar
Blyasse, Zh., (1968) Crystallochemistry of Ferrospinels Moscow Izd. “Metallurgia,” 109114.Google Scholar
Clark, M. G., (1971) Additive electric field gradients and the correlation of Mössbauer quadrupole splitting with stereochemistry Mol. Phys. 20 257269.CrossRefGoogle Scholar
Drits, V. A., (1971) Regularities in crystallochemical structure of trioctahedral micas Tr. Geol. Inst. Akad. Nauk SSSR 221 96110.Google Scholar
Ernst, W. G. and Wai, C. M., (1970) Mössbauer, infrared, X-ray and optical study of cation ordering and dehydrogenation in natural and heat-treated sodic amphiboles Amer. Mineral. 55 12261258.Google Scholar
Galkin, B Ya Gor’kov, B. P. Kuz’min, R. N. Nuñ’es, Kh Kh and Shagdarov, V. B., (1973) Analysis of Mössbauer quadrupole spectra of perovskite compounds of complex composition Symposium on Some Questions of Automatic Processing and Interpretation of Physical Experiments 2 558.Google Scholar
Haagström, L. Wappling, R. and Annersten, H., (1969) Mössbauer study of iron-rich biotites Chem. Phys. Lett. 4 107108.CrossRefGoogle Scholar
Ismail, F. I., (1970) Oxidation-reduction mechanism of octahedral iron in mica type structures Soil Sci. 110 167171.CrossRefGoogle Scholar
Ivanitskiy, B. P. Matyash, I. V. and Rakovich, F. I., (1975) Effect of radioactive radiation of Mössbauer spectra of biotites Geokhimiya 6 850857.Google Scholar
Krzanoswki, W. J. and Newman, A. C., (1972) Computer simulation of cation distribution in the octahedral layers of micas Mineral. Mag. 3 926935.CrossRefGoogle Scholar
Manapov, R. A. and Sitdikov, B. S., (1974) Investigation of biotites in metamorphic rocks of Precambrian Shield of Tatar Anticline by y-resonance spectroscopy method Geokhimiya 9 14151419.Google Scholar
Pfannes, H. D. and Gonser, U., (1973) Goldanski-Karyagin effect versus preferred orientations (texture) Appl. Phys. 1 93102.CrossRefGoogle Scholar
Plachinda, A. S. Tarasevich, Yu I Gol’danskiy, V. I. Ovcharenko, F. D. Makarov, E. F. Suzdalev, I. P. and Suyunova, E. S., (1974) Mössbauer investigation of structural transformations of montmorillonite and hydrous mica under heat treatment Crystallogr. 19 768772.Google Scholar
Pol’shin, E. V. Matyash, I. V. Tepikin, V. E. and Ivanitskiy, V. P., (1972) Effect of Mössbauer on nuclei of Fe57 on biotite Crystallogr. 17 328331.Google Scholar
Sharma, KK Langer, K. and Seifert, F., (1973) Some properties of spinel phases in the binary system MgAl2O4-MgFe2O4 Neues Jahrb. Mineral. Monatsh. 10 442449.Google Scholar
Taylor, G. L. Ruotsala, A. P. and Keeling, R. O., (1968) Analysis of iron in layer silicates by Mössbauer spectroscopy Clays & Clay Minerals 16 381391.CrossRefGoogle Scholar
Tsvetkov, A. I. and Val’yashikhina, E. P., (1956) Concerning hydration and oxidation of micas Izv. Akad. Nauk SSSR, Ser. Geol. 5 7488.Google Scholar
Vedder, W. and Wilkins, R. W., (1969) Dehydroxylation and rehydroxylation, oxidation, and reduction of micas Amer. Mineral. 54 482509.Google Scholar
Voitkovskiy, Yu B Gendler, T. S. Dainyak, L. G. and Kuz’min, R. N., (1975) Towards question of biotite oxidation Tr. V. All-Union Symposium on Mechanoemission and Mechanochemistry of Solid Bodies, Tallin, Oct. 1975 152153.Google Scholar
Warren, C. F., (1972) An interpretation of the hydroxyl content of biotites and muscovites Mineral. Mag. 38 712721.Google Scholar
Weaver, C. Wampler, J. and Pecuil, T., (1967) Mössbauer analysis of iron in layer silicates Science 156 504508.CrossRefGoogle Scholar
Yakovlev, B. G. Pol’shin, E. V. Karpenko, A. A. and Matyash, I. V., (1973) About changes of “degree of dioctahedrality” of biotites USh during vermiculitization Constitution and Properites of Minerals 7 5154 (in Russian.).Google Scholar