Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T09:53:43.259Z Has data issue: false hasContentIssue false

New Data and a Revised Structural Model for Ferrihydrite

Published online by Cambridge University Press:  02 April 2024

Richard A. Eggleton
Affiliation:
Geology Department, Australian National University, GPO Box 4, Canberra, ACT 2601, Australia
Robert W. Fitzpatrick
Affiliation:
CSIRO, Division of Soils, Glen Osmond, South Australia 5064, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Synthetic 2-line and 6-line ferrihydrite samples prepared from ferric nitrate solutions have the bulk compositions Fe4(O,OH,H2O)12 and Fe4,6(O,OH,H2O)12, respectively. The composition depends on crystal size, which averages 20 Å for 2-line and 35 Å for 6-line ferrihydrite. X-ray absorption edge spectra indicate the presence of tetrahedral Fe3+, a conclusion supported by heating experiments which show the development of maghemite after heating to 300°C in the presence of N2, followed by the formation of hematite at higher temperatures. These two reactions are recorded on differential thermal analysis traces by exotherms at 350° and 450°C. Transmission electron microscopy shows that 2-line ferrihydrite has no Z-axis regularity but does show hexagonal 2.54-Å lattice fringes. Six-line ferrihydrite forms faceted crystals having 9.4-Å c-parameter only detectable in dark field. In bright field, 2.54-Å lattice fringes indicate greater atomic regularity than in 2-line ferrihydrite. Analysis of the X-ray powder diffraction pattern of 6-line ferrihydrite suggests a structure based on double-hexagonal close-packed oxygens, containing 36% Fe in tetrahedral sites. Selective chemical dissolution, surface area measurements, and magnetic susceptibility are consistent with the recorded properties of ferrihydrite.

Type
Research Article
Copyright
Copyright © 1988, The Clay Minerals Society

References

Adelsköld, V., 1938 X-ray studies on magneto-plumbite, PbO-6Fe2O3, and other substances resembling “beta-alu-mina”, Na2O-11Al2O3 Arkiv för Kemi. Mineralogi Och Geologi 12A 19.Google Scholar
Brady, G. W., Kurkjian, C. R., Lyden, E. F. X. Robin, M. B., Saltman, P., Spiro, T. and Terzis, A., 1968 The structure of an iron core analog of ferritin Biochemistry 7 21852192.CrossRefGoogle ScholarPubMed
Brindley, G. W., Brindley, G. W. and Brown, G., 1984 Order-disorder in clay mineral structures Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society.Google Scholar
Carlson, L. and Schwertmann, U., 1981 Natural ferrihydrites in surface deposits from Finland and their association with silica Geochim. Cosmochim. Acta 45 421429.CrossRefGoogle Scholar
Childs, C. W., Downes, C. J. and Wells, N., 1982 Hydrous iron oxide minerals with short range order deposited in a spring/stream system, Tongariro National Park, New Zealand Aust. J. Soil Res. 20 119129.CrossRefGoogle Scholar
Chukhrov, F. W., Zvyagin, B. B., Ermilova, L. P., Gorshov, A. I. and Serratosa, J. M., 1973 New data on iron oxides in the weathering zone Proc. Int. Clay Conf., Madrid, 1970 C.S.I.C., Madrid Div. de Ciencias 333341.Google Scholar
Clark, G. M., 1972 The Structures of Non-molecular Solids London Applied Science.Google Scholar
Coey, J. M. D. and Readman, P. W., 1973 Characterization and magnetic properties of natural ferric gel Earth Planet. Sci. Letters 21 4551.CrossRefGoogle Scholar
Crichton, R. R., 1973 Ferritin Structure and Bonding 17 67134.CrossRefGoogle Scholar
Eltantawy, J. M. and Arnold, P. W., 1974 Ethylene glycol sorption by homoionic montmorillonites J. Soil Sci. 25 99110.CrossRefGoogle Scholar
Goncharov, G. N., Efimov, A. A., Kalyamin, A. V. and Tomilov, S. B., 1978 Mechanism of hydrolytic precipitate formation in the hydrolysis of Fe(III) in nitrate solutions Zh. Obshchei Khimii 48 23982408.Google Scholar
Gray, H. B., 1971 Structural models for iron and copper proteins based on spectroscopic and magnetic properties Advan. Chem. Ser. 100 365389.CrossRefGoogle Scholar
Harrison, P. M., Fischbach, F. A., Hoy, T. G. and Haggis, G. M., 1967 Ferric oxyhydroxide core of ferritin Nature 216 11881190.CrossRefGoogle ScholarPubMed
Heald, S. M., Stern, E. A., Bunker, B., Holt, E. M. and Holt, S. L., 1979 Structure of the iron-containing core in ferritin by the extended X-ray absorption fine structure technique J. Amer. Chem. Soc. 101 6773.CrossRefGoogle Scholar
Henmi, T., Wells, N., Childs, C. W. and Parfitt, R. L., 1980 Poorly ordered iron-rich precipitates from springs and streams on andesitic volcanoes Geochim. Cosmochim. Acta 44 365372.CrossRefGoogle Scholar
Herbillon, A. J. and Tran Vinh An, J., 1969 Heterogeneity in silicon-iron mixed hydroxides J. Soil Sci. 20 223235.CrossRefGoogle Scholar
Karim, Z., 1984 Characteristics of ferrihydrites formed by oxidation of FeCl2 solutions containing different amounts of silica Clays & Clay Minerals 32 181184.CrossRefGoogle Scholar
Lewis, D. G. and Schwertmann, U., 1980 The effect of (OH) on the goethite produced from ferrihydrite under alkaline conditions J. Colloid Interface Sci. 78 543553.CrossRefGoogle Scholar
Mackenzie, K. J. D. and Bowden, M. E., 1983 The effect of magnetic fields on the thermal decomposition reactions of inorganic hydroxy-compounds J. Mater. Sci. Lett. 2 3336.CrossRefGoogle Scholar
Mackenzie, R. C. and Meldau, R., 1959 The ageing of sesquioxide gels. I. Iron oxide gels Mineral. Mag. 32 153165.Google Scholar
Massover, W. H. and Cowley, J. M., 1973 The ultrastructure of ferritin macromolecules. The lattice structure of the core crystallites Proc. Nat. Acad. Sci. 70 38473851.CrossRefGoogle ScholarPubMed
Michaelis, L., Coryell, C. D. and Granick, S., 1943 Ferritin III. The magnetic properties of ferritin and some other colloidal ferric compounds J. Biol. Chem. 149 463480.CrossRefGoogle Scholar
Mulay, L. N. and Selwood, P. W., 1954 Hydrolysis of Fe3+: Magnetic and spectrophotometric studies on ferric perchlorate solutions J. Amer. Chem. Soc. 77 26932701.CrossRefGoogle Scholar
Munsell, , 1975 Munsell Soil Color Charts Maryland Munsell Color Co. Inc., Baltimore.Google Scholar
Murad, E. and Schwertmann, U., 1980 The Mössbauer spectrum of ferrihydrite and its relations to those of other iron oxides Amer. Mineral. 65 10441049.Google Scholar
Murphy, P. J., Posner, A. M. and Quirk, J. P., 1976 Characterization of hydrolyzed ferric iron solutions. A comparison of the effects of various anions in solution J. Colloid Interface Sci. 56 312319.CrossRefGoogle Scholar
Prasad, B. and Ghildyal, B. P., 1975 Magnetic susceptibility of lateritic soils and clays Soil Science 120 219229.CrossRefGoogle Scholar
Russell, J. D., 1979 Infrared spectroscopy of ferrihydrite: Evidence for the presence of structural hydroxyl groups Clay Miner. 14 109114.CrossRefGoogle Scholar
Saleh, A. M. and Jones, A. A., 1984 The crystallinity and surface characteristics of synthetic ferrihydrite and its relationship to kaolinite surfaces Clay Miner. 19 745755.CrossRefGoogle Scholar
Schwertmann, U., 1964 Differenzierung der Eisenoxid des Bodens durch Extraktion mit Ammoniumoxolat-Lösung Z. Pfl. Ernähr. Düng. Bodenk. 105 194202.CrossRefGoogle Scholar
Schwertmann, U., 1979 The influence of aluminium on iron oxides: Five clay minerals as sources of aluminium Soil Sei. 128 195200.CrossRefGoogle Scholar
Schwertmann, U., Stucki, J. W., Goodman, B. A. and Schwertmann, U., 1987 Some properties of soil and synthetic iron oxides Iron in Soils and Clay Minerals Dordrecht D. Reidel 203250.Google Scholar
Schwertmann, U. and Fischer, W. R., 1973 Natural “amorphous” ferric hydroxide Geoderma 10 237247.CrossRefGoogle Scholar
Schwertmann, U. and Taylor, R. M., 1972 The transformation of lepidocrocite to goethite Clays & Clay Minerals 20 151158.CrossRefGoogle Scholar
Spiro, T. G., Allerton, S. E., Renner, J., Terzis, A., Bils, R. and Saltman, P., 1966 The hydrolytic polymerization of iron(III) J. Amer. Chem. Soc. 88 27212726.CrossRefGoogle Scholar
Spiro, T. G. and Saltman, P., 1969 Polynuclear complexes of iron and their biological implications Structure and Bonding 6 116152.CrossRefGoogle Scholar
Towe, K. M. and Bradley, W. F., 1967 Mineralogical constitution of colloidal “hydrous ferric oxides” J. Colloid Interface Sci. 24 384392.CrossRefGoogle Scholar
Van der Giessen, A. A., 1966 The structure of iron(III) oxide-hydrate gels J. Inorg. Nucl. Chem. 28 21552159.CrossRefGoogle Scholar
Van Nordstrand, R. A. and Frechette, V. D., 1960 X-ray absorption edge spectroscopy of compounds of chromium, manganese, and cobalt in crystalline and non-crystalline systems Proc. Conf. Non-crystalline Solids New York Wiley.Google Scholar
Webb, J. and McAuliffe, C. A., 1975 Polynuclear iron(III) proteins Techniques and Topics in Bioinorganic Chemistry London Macmillan 270304.Google Scholar