Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-21T10:07:37.939Z Has data issue: false hasContentIssue false

Origin of Saponite-Rich Clays in A Fossil Serpentinite-Hosted Hydrothermal System in The Crustal Basement of The Hyblean Plateau (Sicily, Italy)

Published online by Cambridge University Press:  01 January 2024

Fabio C. Manuella*
Affiliation:
Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Universitádi Catania, Corso Italia 57, I-95129, Catania, Italy
Serafina Carbone
Affiliation:
Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Universitádi Catania, Corso Italia 57, I-95129, Catania, Italy
Giovanni Barreca
Affiliation:
Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Universitádi Catania, Corso Italia 57, I-95129, Catania, Italy
*
*E-mail address of corresponding author: fmanuella@alice.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A diapiric intrusion of clays in the Carlentini Formation (Tortonian) was discovered in a quarry at S. Demetrio High (Hyblean Plateau, Sicily, Italy). Seven clay samples were analyzed by different analytical methods, including X-ray powder diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy, to determine the composition and mechanism of formation (sedimentary vs. hydrothermal) of these clays. Ferric saponite, carbonates (calcite and traces of ankerite), quartz, pyrite, and zeolites (phillipsite and harmotome) were detected using XRD and FTIR. This mineral assemblage, dominated by Fe-rich saponite, and the abundance of light rare-earth elements (LREE), Eu, fluid-mobile elements (FME > 10 × primordial mantle: Li, Be, B, As, Sb, Pb, U, Ba, Sr, Cs), and other incompatible elements (Zr = 169 ppm, Nb = 46 ppm, Th = 11 ppm, on average) imply that S. Demetrio clays precipitated from a mixture of hot Si-rich hydrothermal fluids (350–400°C) and cold seawater. The evidence is in accord with the affinity of clays for hydrothermally modified mafic and ultramafic rocks, forming the Hyblean lower crust, based on multi-element comparisons, and on the occurrence of trace amounts of chrysotile 2Mc1 and sepiolite. The association of long-chain aliphatic-aromatic hydrocarbons (intensity ratios I2927/I2957 > 0.5) with hydrothermal clays, the lack of fossils, and the similarity of the IR absorption bands with those of organic compounds detected previously in some metasomatized Hyblean gabbroic xenoliths suggest a possible abiogenic origin of hydrocarbons via a Fischer-Tropsch-type reaction. The S. Demetrio clay diapir was emplaced at shallow crustal levels in the Late Miocene as a consequence of the interaction, at a greater depth, of an uprising basalt magma and the products of an early, serpentinite-hosted hydrothermal system.

Type
Article
Copyright
Copyright © Clay Minerals Society 2012

References

Allen, D. Seyfried, W.E. Jr., 2005 REE controls in ultramafic hosted MOR hydrothermal systems: An experimental study at elevated temperature and pressure Geochimica et Cosmochimica Acta 69 675683.CrossRefGoogle Scholar
Aoki, S. Kohyaman, N. and Hotta, H., 1996 Hydrothermal clay minerals found in sediment containing yellowish-brown material from the Japan Basin Marine Geology 129 331336.CrossRefGoogle Scholar
Augustin, N. Lackschewitz, K.S. Kuhn, T. and Devey, C.W., 2008 Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15°N) Marine Geology 256 1829.CrossRefGoogle Scholar
Azzaro, E. Bellanca, A. and Neri, R., 1993 Mineralogy and geochemistry of Mesozoic black shales and interbedded carbonates, southeastern Sicily: evaluation of diagenetic processes Geological Magazine 130 191202.CrossRefGoogle Scholar
Bach, W. Garrido, C.J. Paulick, H. Harvey, J. and Rosner, M., 2004 Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15°N Geochemistry Geophysics Geosystems 5 122.CrossRefGoogle Scholar
Barrett, T.J. Jarvis, I. Longstaffe, F.J. and Farquhar, R., 1988 Geochemical aspects of hydrothermal sediments in the eastern Pacific Ocean: an update The Canadian Mineralogist 26 841858.Google Scholar
Behncke, B., 1999 Il vulcanesimo del Plateau Ibleo (Sicilia Sud-orientale) negli ultimi 230 Ma Bollettino dell’Accademia Gioenia di Scienze Naturali di Catania 31 3950.Google Scholar
Ben-Avraham, Z. Boccaletti, M. Cello, G. Grasso, M. Lentini, F. Torelli, L. and Tortorici, L., 1990 Principali domini strutturali originatisi dalla collisione neogenicoquaternaria nel Mediterraneo centrale Memorie Società Geologica Italiana 45 453462.Google Scholar
Benhammou, A. Tanouti, B. Nibou, L. Yaacoubi, A. and Bonnet, J.-P., 2009 Mineralogical and physicochemical investigation of Mg-smectite from Jbel Ghassoul, Morocco Clays and Clay Minerals 57 264270.CrossRefGoogle Scholar
Bianchi, F. Carbone, S. Grasso, M. Invernizzi, G. Lentini, F. Longaretti, G. Merlini, S. and Mostardini, F., 1987 Sicilia orientale: Profilo geologico Nebrodi-Iblei Memorie della Società Geologica Italiana 38 429458.Google Scholar
Bianchini, G. Bell, K. and Vaccaro, C., 1999 Mantle sources of the Cenozoic Iblean volcanism (SE Sicily, Italy): Sr-Nd- Pb isotopic constraints Mineralogy and Petrology 67 213222.CrossRefGoogle Scholar
Boschi, C. Dini, A. Früh-Green, G.L. and Kelley, D.S., 2008 Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30°N): Insights from B and Sr isotope data Geochimica et Cosmochimica Acta 72 18011823.CrossRefGoogle Scholar
Boukir, A. Guiliano, M. Doumenq, P. El Hallaoui, A. and Mille, G., 1998 Caractérisation structurale d’asphaltènes pétroliers par spectroscopie infrarouge (IRTF). Application à la photo-oxidation Comptes Rendus de l’Academie des Sciences de Paris Série Ilc, 597602.Google Scholar
Bradley, A.S. and Summons, R.E., 2010 Multiple origins of methane at the Lost City Hydrothermal Field Earth and Planetary Science Letters 297 3441.CrossRefGoogle Scholar
Brindley, G.W. Bish, D.L. and Wan, H.-M., 1979 Compositions, structures, and properties of nickel-containing minerals in the kerolite-pimelite series American Mineralogist 64 615625.Google Scholar
Carbone, S. and Lentini, F., 1981 Caratteri deposizionali delle vulcaniti del Miocene superiore negli Iblei (Sicilia Sud-Orientale) Geologica Romana 20 79101.Google Scholar
Carlson, R.L., 2001 The abundance of ultramafic rocks in Atlantic Ocean crust Geophysics Journal International 144 3748.CrossRefGoogle Scholar
Cave, R.R. German, C.R. Thomson, J. and Nesbitt, R.W., 2002 Fluxes to sediments underlying the Rainbow hydrothermal plume at 36°14′N on the Mid-Atlantic Ridge Geochimica et Cosmochimica Acta 66 19051923.CrossRefGoogle Scholar
Ciliberto, E. Crisafulli, C. Manuella, F.C. Samperi, F. Scirè, S. Scribano, V. Viccaro, M. and Viscuso, E., 2009 Aliphatic hydrocarbons in metasomatized gabbroic xenoliths from Hyblean diatremes (Sicily): genesis in a serpentinite hydrothermal system Chemical Geology 258 258268.CrossRefGoogle Scholar
Coelho, R.R. Hovell, I. de Mello Monte, M.B. Middea, A. and de Souza, A.L., 2006 Characterisation of aliphatic chains in vacuum residues (VRs) of asphaltenes and resins using molecular modelling and FTIR techniques Fuel Processing Technology 87 325333.CrossRefGoogle Scholar
Cole, T.G., 1988 The nature and origin of smectite in the Atlantis II Deep, Red Sea The Canadian Mineralogist 26 755763.Google Scholar
Cuadros, J. Dekov, V.M. Arroyo, X. and Nieto, F., 2011 Smectite formation in submarine hydrothermal sediments: samples from the HMS Challenger Expedition (1872–1876) Clays and Clay Minerals 59 147164.CrossRefGoogle Scholar
Dekov, V.M. Cuadros, J. Shanks, W.C. and Koski, R.A., 2008 Deposition of talc — kerolite-smectite — smectite at seafloor hydrothermal vent fields: evidence from mineralogical, geochemical and oxygen isotope studies Chemical Geology 247 171194.CrossRefGoogle Scholar
Deschamps, F. Guillot, S. Godard, M. Andreani, M. and Hattori, K., 2011 Serpentinites act as sponges for fluidmobile elements in abyssal and subduction zone environments Terra Nova 23 171178.CrossRefGoogle Scholar
Dias, S. and Barriga, FJAS, 2006 Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34′N; 33°26′W) at MAR Marine Geology 225 157175.CrossRefGoogle Scholar
Dos Anjos, C.W.D. Meunier, A. Guimaràes, E.M. and El Albani, A., 2010 Saponite-rich black shales and nontronite beds of the Permian Irati Formation: sediment sources and thermal metamorphism (Paraná Basin, Brazil) Clays and Clay Minerals 58 606626.CrossRefGoogle Scholar
Douville, E. Charlou, J.-L. Oelkers, E. Bienvenu, H. Jove Colon, P. Donval, F. Fouquet, P. Prieur, Y. and Appriou, D., 2002 The Rainbow vent fluids (36814VN, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids Chemical Geology 184 3748.CrossRefGoogle Scholar
Dubińska, E. Bylina, P. Kozłowski, A. Dörr, W. Nejbert, K. Scastock, J. and Kulicki, C., 2004 U-Pb dating of serpentinization: hydrothermal zircon from metosomatic rodingite shell (Sudetic Ophiolite, SW Poland) Chemical Geology 203 183203.CrossRefGoogle Scholar
Emeis, K.-C. and Weissert, H., 2009 Tethyan—Mediterranean organic carbon-rich sediments from Mesozoic black shales to sapropels Sedimentology 56 247266.CrossRefGoogle Scholar
Farmer, V.C., 1974 The layered silicates The Infrared Spectra of Minerals 4 331363.CrossRefGoogle Scholar
Flynn, G.J. Keller, L.P. Jacobsen, C. and Wirick, S., 2004 An assessment of the amount and types of organic matter contributed to the Earth by interplanetary dust Advances in Space Research 33 5766.CrossRefGoogle Scholar
Frost, B.R. and Beard, J.S., 2007 On silica activity and serpentinization Journal of Petrology 48 13511368.CrossRefGoogle Scholar
Fu, Q. Sherwood Lollar, B. Horita, J. Lacrampe-Couloume, G. Seyfried, W.E. Jr., 2007 Abiotic formation of hydrocarbons under hydrothermal conditions: constraints from chemical and isotope data Geochimica et Cosmochimica Acta 71 19821998.CrossRefGoogle Scholar
Gablina, I.F. Semkova, T.A. Stepanova, T.V. and Gor’kova, N.V., 2006 Diagenetic alterations of copper sulfides in modern ore-bearing sediments of the Logatchev-1 hydrothermal field (Mid-Atlantic Ridge 14°45′N) Lithologies and Mineral Resources 41 2744.CrossRefGoogle Scholar
Granath, J.W. Casero, P., Swennen, R. Roure, F. and Granath, J.W., 2004 Tectonic setting of the petroleum systems of Sicily Deformation, Fluid Flow, and Reservoir Appraisal in Foreland Fold and Thrust belts 391411.Google Scholar
Grasso, M. and Lentini, F., 1982 Sedimentary and tectonic evolution of the eastern Hyblean Plateau (southeastern Sicily) during Late Cretaceous to Quaternary time Palaeograohy Palaeoclimatology Palaeoecology 39 261280.CrossRefGoogle Scholar
Grasso, M. Pedley, H.M. Behncke, B. Maniscalco, R. Sturiale, G., Pasquarè, G. and Venturini, C., 2004 Integrated stratigraphic approch to the study of the Neogene-Quaternary sedimentation and volcanism in the northern Hyblean Plateau (Sicily) Mapping Geology in Italy Rome APAT 159166.Google Scholar
Grauby, O. Petit, S. Decarreau, A. and Baronnet, A., 1994 The nontronite-saponite series: an experimental approach European Journal of Mineralogy 6 99112.CrossRefGoogle Scholar
Gromet, L.P. Dymek, R.F. Haskin, L.A. and Korotev, R.L., 1984 The “North American shale composite”: its compilation, major and trace element characteristics Geochimica et Cosmochimica Acta 48 24692482.CrossRefGoogle Scholar
Kloprogge, J.T. Komarneni, S. and Amonette, J.E., 1999 Synthesis of smectite clay minerals: a critical review Clays and Clay Minerals 47 529554.CrossRefGoogle Scholar
Konn, C. Charlou, J.L. Donval, J.P. Holm, N.G. Dehairs, F. and Bouillon, S., 2009 Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents Chemical Geology 258 299314.CrossRefGoogle Scholar
Macdonald, A.H. and Fyfe, W.S., 1985 Rate of serpentinization in seafloor environments Tectonophysics 116 123135.CrossRefGoogle Scholar
Manuella, F.C., 2011 Vein mineral assemblage in partially serpentinized peridotite xenoliths from Hyblean Plateau (South-eastern Sicily, Italy) Periodico di Mineralogia 80 247266.Google Scholar
Marcaillou, C. Muñoz, M. Vidal, O. Parra, T. and Harfouche, M., 2011 Mineralogical evidence for H2 degassing during serpentinization at 300°C/300 bar Earth and Planetary Science Letters 303 281290.CrossRefGoogle Scholar
Mayanovic, R.A. Anderson, A.J. Bassett, W.A. and Chou, I.M., 2009 Steric hindrance and the enhanced stability of light rare-earth elements in hydrothermal fluids American Mineralogist 94 14871490.CrossRefGoogle Scholar
McDonough, W.F. and Sun, S.-s., 1995 The composition of the Earth Chemical Geology 120 223253.CrossRefGoogle Scholar
Miller, S.A. van der Zee, W. Olgaard, D.L. and Connolly, J.A.D., 2003 A fluid-pressure feedback model of dehydration reactions: experiments, modelling, and application to subduction zones Tectonophysics 370 241251.CrossRefGoogle Scholar
Mizutani, T. Fukushima, Y. Doi, H. and Kamigaito, O., 1991 Process for producing clay mineral of chain structure United States Patent 4987106 16.Google Scholar
Mosser-Ruck, R. Cathelineau, M. Guillaume, D. Charpentier, D. Rousset, D. Barres, O. and Michau, N., 2010 Effects of temperature, pH, and iron/clay and liquid/clay ratios on experimental conversion of dioctahedral smectites to berthierine, chlorite, vermiculite, or saponite Clays and Clay Minerals 58 280291.CrossRefGoogle Scholar
Nermoen, A. Galland, O. Jettestuen, E. Fristad, K. Podladchikov, Y. Svensen, H. and Malthe-Sørenssen, A., 2010 Experimental and analytic modeling of piercement structures Journal of Geophysical Research 115 B10202.CrossRefGoogle Scholar
Nimis, P. Tesalina, S.G. Omenetto, P. Tartarotti, P. and Lerouge, C., 2004 Phyllosilicate minerals in the hydrothermal mafic—ultramafic-hosted massive-sulfide deposit of Ivanovka (southern Urals): comparison with modern ocean seafloor analogues Contributions to Mineralogy and Petrology 147 363383.CrossRefGoogle Scholar
Parthasarathy, G. Choudary, B.M. Sreedhar, B. Kunwar, A.C. and Srinivasan, R., 2003 Ferrous saponite from the Deccan Trap, India, and its application in adsorption and reduction of hexavalent chromium American Mineralogist 88 19831988.CrossRefGoogle Scholar
Percival, J.B. and Ames, D.E., 1993 Clay mineralogy of active hydrothermal chimneys and an associated mound, Middle Valley, Northern Juan de Fuca Ridge The Canadian Mineralogist 31 957971.Google Scholar
Pikovskii, Y.L. Chernova, T.G. Alekseeva, T.A. and Verkhovskaya, Z.I., 2004 Composition and nature of hydrocarbons in modern serpentinization areas in the ocean Geochemistry International 42 971976.Google Scholar
Sansone, M.T.C. Rizzo, G. and Mongelli, G., 2011 Petrochemical characterization of mafic rocks from the Ligurian ophiolites, southern Apennines International Geology Review 53 130156.10.1080/00206810902954993CrossRefGoogle Scholar
Sapienza, G. and Scribano, V., 2000 Distribution and representative whole-rock chemistry of deep-seated xenoliths from the Iblean Plateau, south-eastern Sicily, Italy Periodico di Mineralogia 69 185204.Google Scholar
Sapienza, G. Griffin, W.L. O’Reilly, S.Y. and Morten, L., 2007 Crustal zircons and mantle sulfides: Archean to Triassic events in the lithosphere beneath south-eastern Sicily Lithos 96 503523.CrossRefGoogle Scholar
Scarascia, S. Cassinis, R. Lozej, A. and Nebuloni, A., 2000 A seismic and gravimetric model of crustal structures across the Sicily Channel Rift Zone Bollettino della Società Geologica Italiana 19 213222.Google Scholar
Schmidt, K. Garbe-Schönberg, M. Koschinsky, A. Strauss, H. Jost, C.L. Klevenz, V. and Köninger, P., 2011 Fluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18′S, Mid-Atlantic Ridge): constraints on fluid—rock interaction in heterogeneous lithosphere Chemical Geology 280 118.CrossRefGoogle Scholar
Scirè, S. Ciliberto, E. Crisafulli, C. Scribano, V. Bellatreccia, F. and Della Ventura, G., 2011 Asphaltenebearing mantle xenoliths from Hyblean diatremes, Sicily Lithos 125 956968.CrossRefGoogle Scholar
Scribano, V., 1986 The harzburgite xenoliths in a Quaternary basanitoid lava near Scordia (Hyblean plateau, Sicily) Rendiconti della Società Italiana di Mineralogia e Petrologia 41 245255.Google Scholar
Scribano, V., 1987 The ultramafic and mafic nodule suite in a tuff-breccia pipe from Cozzo Molino (Hyblean Plateau, SE Sicily) Rendiconti della Società Italiana di Mineralogia e Petrologia 42 203217.Google Scholar
Scribano, V. and Manuella, F.C., 2008 Early seafloor exposure of Hyblean uppermost mantle and prime role of serpentinization for plateau uplifting: a xenolith perspective Atti del Congresso ‘Tethys to Mediterranean: a journey of geological discovery’ 103.Google Scholar
Scribano, V. Ioppolo, S. and Censi, P., 2006 Chlorite/smectite-alkali feldspar metasomatica xenoliths from Hyblean Miocenic diatremes (Sicily, Italy): evidence for early interaction between hydrothermal brines and ultramafic/mafic rocks at crustal levels Ofioliti 31 161171.Google Scholar
Scribano, V. Sapienza, G.T. Braga, R. and Morten, L., 2006 Gabbroic xenoliths in tuff-breccia pipes from the Hyblean Plateau: insights into the nature and composition of the lower crust underneath South-eastern Sicily, Italy Mineralogy and Petrology 86 6388.CrossRefGoogle Scholar
Severmann, S. Mills, R.A. Palmer, M.R. and Fallick, A.E., 2004 The origin of clay minerals in active and relict hydrothermal deposits Geochimica et Cosmochimica Acta 68 7388.CrossRefGoogle Scholar
Silverstein, R.M. Webster, F.X. and Kiemle, D.J., 2005 Spectroscopic Identification of Organic Compounds 7th edition New Jersey, USA John Wiley and Sons.Google Scholar
Singer, A. Stoffers, P. Heller-Kallai, L. and Szafranek, D., 1984 Nontronite in deep-sea core from the south Pacific Clays and Clay Minerals 32 375383.CrossRefGoogle Scholar
Spivack, A.J. and Edmond, J.M., 1987 Boron isotope exchange between seawater and the oceanic crust Geochimica et Cosmochimica Acta 51 10331043.CrossRefGoogle Scholar
Środoń, J., 1999 Nature of mixed-layer clays and mechanisms of their formation and alteration Annual Review in Earth and Planetary Sciences 27 1953.CrossRefGoogle Scholar
Szatmari, P., 1989 Petroleum formation by Fischer-Tropsch synthesis in plate tectonics AAPG Bulletin 73 989998.Google Scholar
Taran, Y.A. Kliger, G.A. and Sevastianov, V.S., 2007 Carbon isotope effects in the open-system Fischer–Tropsch synthesis Geochimica et Cosmochimica Acta 71 44744487.CrossRefGoogle Scholar
Tatzber, M. Stemmer, M. Spiegel, H. Katzlberger, C. Haberhauer, G. and Gerzabek, M.H., 2007 An alternative method to measure carbonate in soils by FTIR spectroscopy Environmental Chemistry Letters 5 912.CrossRefGoogle Scholar
Torelli, L. Grasso, M. Mazzoldi, G. and Peis, D., 1998 Plio-Quaternary tectonic evolution and structure of the Catania foredeep, the northern Hyblean Plateau and the Ionian shelf (SE Sicily) Tectonophysics 298 209221.CrossRefGoogle Scholar
Trua, T. Laurenzi, M.A. and Oddone, M., 1997 Geochronology of the Plio-Pleistocene Hyblean volcanism (SE Sicily): new 40Ar/39Ar data Acta Vulcanologica 9 167176.Google Scholar
Trua, T. Esperança, S. and Mazzuoli, R., 1998 The evolution of the lithospheric mantle along the N African plate: geochemical and isotopic evidence from the tholeiitic and alkaline volcanic rocks of the Hyblean Plateau Italy. Contributions to Mineralogy and Petrology, 131, 307322.CrossRefGoogle Scholar
Viccaro, M. Scribano, V. Cristofolini, R. Ottolini, L. and Manuella, F.C., 2009 Primary origin of some trachytoid magmas: Inferences from naturally quenched glasses in hydrothermally metasomatized gabbroic xenoliths (Hyblean area, Sicily) Lithos 113 659672.CrossRefGoogle Scholar
Vogels, RJMJ Kloprogge, J.T. and Geus, J.W., 2005 Synthesis and characterisation of boron and gallium substituted saponite clays below 100°C at one atmosphere Microporous and Mesoporous Materials 77 159165.CrossRefGoogle Scholar
Wilt, B.K. Welch, W.T. and Rankin, J.G., 1998 Determination of asphaltenes in petroleum crude oils by Fourier Transform Infrared Spectroscopy Energy and Fuels 12 10081012.CrossRefGoogle Scholar
You, C.-F. Castillo, P.R. Gieskes, J.M. Chan, L.H. and Spivack, A.J., 1996 Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones Earth and Planetary Science Letters 140 4152.CrossRefGoogle Scholar
Zappaterra, E., 1994 Source-rock distribution model of the Periadriatic Region American Association of Petroleum Geologists Bulletin 78 333354.Google Scholar