Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T03:06:42.213Z Has data issue: false hasContentIssue false

Reactions of the Conjugated Dienes Butadiene and Isoprene Alone and with Methanol Over Ion-Exchanged Montmorillonites

Published online by Cambridge University Press:  02 April 2024

J. M. Adams
Affiliation:
Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth, Dyfed SY23 1NE, United Kingdom
T. V. Clapp
Affiliation:
Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth, Dyfed SY23 1NE, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The reactions of simple conjugated dienes over divalent and trivalent transition metal-exchanged montmorillonites yield, in the absence of nucleophiles, a variety of products. Some of these products are a result of Diels-Alder cycloaddition reactions, whereas others are indicative of carbocation intermediates, i.e., other dimers, oligomers, and isomerization products of these intermediates. The reactions in sealed cells between 20° and 150°C show trends in the yields of the various product groups. Dimers of butadiene and isoprene formed by cycloaddition (i.e., 4-vinylcyclohexene and the monoterpene p-menthadiene (limonene)) were formed at low temperatures (20–50°C). As the temperature was raised, the total yield of dimers increased and higher oligomers were formed along with isomerization products of the dimers and oligomers. The products of cycloaddition, however, did not increase markedly. The type of solvent used for the reaction was found to influence the reactivity, e.g., the use of 1,4-dioxan rather than chloroform led to a reduction in total conversion and also to a markedly higher degree of selectivity. In the presence of a suitable nucleophile (methanol), both dienes gave the 1,4-addition product predominantly, which suggests that an allylic carbocation intermediate was involved. The use of an interlayer-supported nickel complex, [HNi(P(OEt)3)4]+, produced the only large scale polymerization observed in this work.

Type
Research Article
Copyright
Copyright © 1986, The Clay Minerals Society

References

Adams, J. M., Ballantine, J. A., Graham, S. H., Laub, R. J., Purnell, J. H., Reid, P. I., Shaman, W. Y. M. and Thomas, J. M., 1978 Organic synthesis using sheet silicate intercalates: low temperature conversions of olefins to secondary ethers Angew. Chem. Int. Ed. Engl. 17 282283.CrossRefGoogle Scholar
Adams, J. M., Ballantine, J. A., Graham, S. H., Laub, R. J., Purnell, J. H., Reid, P. I., Shaman, W. Y. M. and Thomas, J. M., 1979 Selective chemical conversions using sheet silicates: low temperature addition of water to 1-alkenes J. Catal. 58 238252.CrossRefGoogle Scholar
Adams, J. M., Bylina, A. and Graham, S.H., 1981 Shape selectivity in low temperature reactions of C6-alkenes catalyzed by a Cu2+-exchanged montmorillonite Clay Miner. 16 325332.CrossRefGoogle Scholar
Adams, J. M., Bylina, A. and Graham, S. H., 1982 Conversion of 1-hexene to di-2-hexylether using a Cu2+-smectite catalyst J. Catal. 75 190195.CrossRefGoogle Scholar
Adams, J. M., Clapp, T. V. and Clement, D. E., 1983 Catalysis by montmorillonites Clay Miner. 18 411421.CrossRefGoogle Scholar
Adams, J. M., Clement, D. E. and Graham, S. H., 1981 Low temperature reaction of alcohols to form t-butyl ethers using clay catalysts J. Chem. Res. 254255.Google Scholar
Adams, J. M., Clement, D. E. and Graham, S. H., 1982 The synthesis of methyl-t-butyl ether (MTBE) from methanol and isobutene using a clay catalyst Clays & Clay Minerals 30 122134.CrossRefGoogle Scholar
Adams, J. M., Clement, D. E. and Graham, S. H., 1983 Reactions of alcohols with alkenes over an aluminum-exchanged montmorillonite Clays & Clay Minerals 32 129136.CrossRefGoogle Scholar
Adams, J. M., Davies, S. E. and Graham, S. H., 1982 Catalysed reactions of organic molecules at clay surfaces: ester breakdown, dimerizations and lactonisations J. Catal. 78 197208.CrossRefGoogle Scholar
Ballantine, J. A., Davies, M., Purnell, H., Rayanakorn, M., Thomas, J. M. and Williams, K. J., 1981 Chemical conversions using sheet silicates: facile ester synthesis by direct addition of acids to alkenes J. Chem. Soc. Chem. Comm. 89.CrossRefGoogle Scholar
Ballantine, J. A., Purnell, H., Rayanakorn, M., Thomas, J. M. and Williams, K. J., 1981 Chemical conversions using sheet silicates: novel intermolecular elimination of ammonia from amines J. Chem. Soc. Chem. Comm. 910.CrossRefGoogle Scholar
Bellville, D. J. and Bauld, N. L., 1981 The cation-radical catalyzed Diels-Alder reaction J. Amer. Chem. Soc. 103 718720.CrossRefGoogle Scholar
Bellville, D. J. and Bauld, N. L., 1982 Selectivity profile of the cation-radical Diels-Alder reaction J. Amer. Chem. Soc. 104 26652667.CrossRefGoogle Scholar
Budzikiewicz, H., Djerassi, C. and Williams, D. H., 1964 Structure Elucidation of Natural Products by Mass Spectroscopy. Vol. II San Francisco Holden-Day 2172.Google Scholar
Bylina, A., Adams, J. M., Graham, S. H. and Thomas, J. M., 1980 Chemical conversions using sheet silicates: a simple method for producing methyl t-butyl ether (MTBE) J. Chem. Soc, Chem. Comm. 10031004.CrossRefGoogle Scholar
den Otter, M. J. A. M., 1970 The dimerization of oleic acid with a montmorillonite catalyst I: important process parameters; some main reactions Fette Siefen Anstrichm. 72 667673.CrossRefGoogle Scholar
den Otter, M. J. A. M., 1970 The dimerization of oleic acid with a montmorillonite catalyst II: Glc analysis of the monomer; the structure of the dimer; a reaction model Fette Siefen Anstrichm. 72 875883.CrossRefGoogle Scholar
den Otter, M. J. A. M., 1970 The dimerization of oleic acid with a montmorillonite catalyst III: test of the reaction model Fette Siefen Anstrichm. 72 10561066.CrossRefGoogle Scholar
Dessau, R. M. (1983) Diels-Alder cyclization over low acidity large pore zeolites: U.S. Patent 4,384,153, May 17, 3 pp.Google Scholar
Downing, R. S., Van Austel, J., and Joustra, A. H. (1978) Dimerization catalyst: U.S. Patent 4,125,483, Nov. 14, 3 pp.Google Scholar
Eisenbach, D. and Gallei, E., 1979 Infrared spectroscopic investigations relating to coke formation on zeolites J. Catal. 56 377389.CrossRefGoogle Scholar
Frenkel, M. and Heller-Kallai, L., 1983 Interlayer cations as reaction directors in the transformation of limonene on montmorillonite Clays & Clay Minerals 31 9296.CrossRefGoogle Scholar
Laszlo, P. and Lucchetti, J., 1984 Catalysis of the DielsAlder reaction in the presence of clays Tetrahedron Lett. 25 15671570.CrossRefGoogle Scholar
Laszlo, P. and Lucchetti, J., 1984 Easy formation of Diels-Alder cycloadducts between furans and αβ-unsaturated aldehydes and ketones at normal pressure Tetrahedron Lett. 25 43874388.CrossRefGoogle Scholar
Maxwell, I. E., Eley, D. D., Pines, H. and Weisz, P. B., 1982 Non-acid catalysis with zeolites Adv. CataL New York Acad. Press 273.Google Scholar
McKillop, A. and Young, D. W., 1979 Organic synthesis using supported reagents. Part I Synthesis 401422.CrossRefGoogle Scholar
Meuly, W. C., 1972 Synthesis of terpene chemicals from isoprene An. Acad. Bras. Cienc. 44 373382.Google Scholar
Morrison, R. T. and Boyd, R. N., 1973 Organic Chemistry 3rd Boston Allyn and Bacon 948952.Google Scholar
Mortland, M. M. and Holmes, J. W., 1968 Protonation of compounds at clay mineral surfaces Trans. 9th Int. Cong. Soil Sci. New York Elsevier 691699.Google Scholar
Pinnavaia, T. J., Raythatha, R., Guo-Shuh Lee, J., Hallovan, L. J. and Hoffman, J. F., 1979 Intercalation of catalytically active metal complexes in mica-type silicates. Rhodium hydrogénation catalysts J. Amer. Chem. Soc. 101 68916897.CrossRefGoogle Scholar
Reimlinger, H. K., De Ruiter, E. H., and Kruerke, U. K. (1969) Butadiene reactions catalyzed by copper (1) zeolite: U.S. Patent 3,444,253, May 13, 2 pp.Google Scholar
Ryhage, R. and von Sydow, E., 1963 Mass spectrometry of terpenes—I. Monoterpene hydrocarbons Acta Chem. Scand. 17 20252035.CrossRefGoogle Scholar
Scurrell, M. S., 1978 Heterogenized homogenous catalysts Spec. Period. Rep. Catal. 2 215242.Google Scholar
Thomas, A. F. and Willhalm, B., 1964 Les spectres de masse dans l’analyse—les spectres de masse des hydrocarbures monoterpeniques Helv. Chim. Acta 47 475488.CrossRefGoogle Scholar
Tolman, C. A., 1972 Chemistry of tetrakis (trimethyl phosphate) nickel hydride, HNi(P(OEt)3)4. IV. Mechanism of olefin isomerisation J. Amer. Chem. Soc. 94 29942999.CrossRefGoogle Scholar