Published online by Cambridge University Press: 02 April 2024
Pillared bentonites were found to be efficient catalysts for the O-methyl bond cleavage of anisoles (e.g., m-methylanisole, guaiacol, and creosol) under very mild, static conditions (150°C, a few hours, inert atmosphere). The O-methyl bond cleavage led to phenolic products. Gas chromatographymass spectrometry and solid-state 13C nuclear magnetic resonance (NMR) techniques used to probe 13C-labeled anisoles revealed that dealkylation and transalkylation reactions occurred to a large extent, and that conversion was efficient at >95% after two days. Ortho- and para-isomers were observed exclusively, without any evidence of meta-substitution. Volatile products were determined by mass spectrometry to be 13CH3OH and (13CH3)2O. Magic-angle spinning 13C NMR experiments showed that the molecules were fairly mobile in the clay micropores prior to catalysis. After catalysis, cross-polarization NMR showed that molecular motion had decreased markedly. Ultraviolet-visible spectroscopy of the colored complexes suggested some quinone formation. The trend of clay reactivity was found to be: pillared bentonite ≫ acid-washed montmorillonite > untreated bentonite > pillared fluorhectorite ≃ untreated fluorhectorite.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.