Published online by Cambridge University Press: 01 January 2024
The fluoride ion is crystal chemically very similar to the hydroxyl ion, substituting for hydroxyl in many minerals in which hydrogen bonding is not important. Fluoride substitutions are particularly common in 2:1 layer silicates, such as micas, illites and smectites. The brick and tile industries, which use naturally occurring clays as their primary raw materials, have devoted considerable effort to understanding fluorine evolution during firing of the raw materials due to increasingly stringent fluorine emission regulations. In order to understand fluorine evolution from ceramic raw materials, we have studied a number of phyllosilicate materials used in making bricks. X-ray powder diffraction and fluorine analyses were combined with heating experiments and thermogravimetric analysis to evaluate the chemical and structural changes taking place on heating. Fluorine remained in 2:1 layer silicates to higher temperatures than did hydroxyl, but it behaved identically to hydroxyl in the kaolinite studied. In all cases, fluorine evolution coincided with structural breakdown of the clay host. These results show that fluorine evolution will consistently occur during firing of clay raw materials, and the problems of fluorine emission cannot be readily solved by simple variations of firing temperatures or times.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.