Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T19:13:28.607Z Has data issue: false hasContentIssue false

Transformation of Sericite into an Interstratified Mineral

Published online by Cambridge University Press:  01 July 2024

Katsutoshi Tomita
Affiliation:
Institute of Earth Sciences, Kagoshima University, Kagoshima, Japan
Toshio Sudo
Affiliation:
Geological and Mineralogical Institute, Faculty of Science, Tokyo University of Education, Tokyo, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sericite was K-depleted with molten LiNO3. The sample was changed into an interstratified structure in the presence of a small amount of LiNO3 after prolonged treatment, and in the presence of a considerable amount of LiNO3 a similar structure was formed after about 3 hr of reaction. In the case of the presence of the proper amount of NaCl, a mixed-layer structure was easily obtained by treatment for a long period of time with a considerable amount of molten LiNO3.

The interstratified mineral had a basal spacing of 22 Å–23·3 Å which was expanded to 25 Å–27·6 Å by treatment with ethylene glycol.

Résumé

Résumé

Une séricite a été épuisée en potassium par LiNO3 fondu. L’échantillon a été transformé en une structure interstratifiée en présence d’une petite quantité de LiNO3 après un traitement prolongé; en présence d’une quantité importante de LiNO3. une structure similaire s’est formée après environ trois heures de réaction. Dans le cas où une quantitè appropriée de NaCI est présente, une structure interstratifiée a été facilement obtenue par un traitement de longue durée avec une quantité importante de LiNO3 fondu.

Le minéral interstratifié a un espacement basal de 22–23,3 Å, qui gonfle à 25–27,6 Å après traitement à l’éthylène-glycol.

Kurzreferat

Kurzreferat

Mit Hilfe von geschmolzenem LiNO3 wurde einem Sericit Kalium entzogen. In Gegenwart einer geringen Menge von LiNO3 wurde die Probe nach längerer Behandlung in ein zwischengeschichtetes Gefüge verwandelt, und in Gegenwart einer griösseren Menge von LiNO3 wurde ein ähnliches Gefüge bereits nach drei Stunden Reaktionszeit gebildet. Bei Anwesenheit der entsprechenden Menge von NaCl konnte eine Gemischtschichtstruktur leicht erhalten werden durch Behandlung über eine lämgere Zeitspanne mit einer beträchtlichen Menge von geschmolzenem LiNO3.

Das zwischengeschichtete Mineral hatte einen basalen Abstand von 22 Å–23,3 Å der durch Behandlung mit Äthylenglykol auf 25 Å–27,6 Å erweitert wurde.

Резюме

Резюме

Серицит был подвергнут обработке расплавленным LiNO3 с целью удаления К. Образец претерпел превращение в смешаннослойную структуру в присутствии небольшого количества LiNO3 при продолжительной обработке или же в присутствии достаточно большого количества LiО3 в течение трех часов. В присутствии достаточного количества NаСl смешаннослойная структура легко получалась при обработке в течение длительного периода времени большим количеством расплавленного LiО3.

Смешаннослойный минерал характеризуется базальным межплоскостным расстоянием 22–23,3 0А, которое увеличивается до 25–27,6 0А при обработке этилен-гликолем.

Type
Research Article
Copyright
Copyright © 1971, The Clay Minerals Society

References

Barshad, I., (1948) Vermiculite and its relation to biotite as revealed by base exchange reactions, X-ray analyses, differential thermal curves and water content Am. Mineralogist 33 655678.Google Scholar
Barshad, I., (1954) Cation exchange in micaceous minerals: Replaceability of ammonium and potassium from vermiculite, biotite and montmorillonite Soil. Sci. 78 5776.CrossRefGoogle Scholar
Brindley, G. W., (1956) Allevardite Am. Mineralogist 41 91103.Google Scholar
De Mumbrum, L. E., (1959) Exchangeable potassium levels in vermiculite and K-depleted micas, and implications relative to potassium levels in soils Soil Sci. Soc. Am. Proc. 23 192194.CrossRefGoogle Scholar
De Mumbrum, L. E., (1963) Conversion of mica to vermiculite by potassium removal Soil Sci. 96 275276.CrossRefGoogle Scholar
Greene-Kelly, R., (1955) Dehydration of the montmorillonite minerals Mineral. Mag. 30 604615.Google Scholar
Hanway, J. J., (1956) Fixation and release of ammonium in soils and certain minerals Iowa State Coll. J. Sci 30 374375.Google Scholar
Jackson, M. L. and Sherman, G. D., (1953) Chemical weathering in soils Advanc. Agron. 5 219318.CrossRefGoogle Scholar
Mortland, M. M., (1958) Kinetics of potassium release from biotite Soil Sci. Soc. Am. Proc. 22 503508.CrossRefGoogle Scholar
Oinuma, K. and Hayashi, H., (1965) Infrared study of mixed-layer clay minerals Am. Mineralogist 50 12131227.Google Scholar
Rausell-Colom, J. A., Sweatman, C. B., Wells, C. B. and Norrish, K. (1965) In Experimental Pedology (Edited by Holdsworth, E. G. and Crawford, D. V.), pp. 4072 Buttersworths, London.Google Scholar
Rich, C. I. and Cook, M. G., (1963) Formation of dioctahedral vermiculite in Virginia soils Clays and Clay Minerals 10 96106.Google Scholar
Scott, A. D., (1968) Effect of particle size on interlayer potassium exchange in micas Trans. 9th Cong. Int. Soil Sci. Soc. 2 649660.Google Scholar
Scott, A. D., Hunziker, R. R. and Hanway, J. J., (1960) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron — I. Preliminary experiments Soil Sci. Soc. Am. Proc. 24 191194.CrossRefGoogle Scholar
Scott, A. D. and Reed, M. G., (1962) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron — II. Biotite Soil Sci. Soc.Am. Proc. 26 4145.CrossRefGoogle Scholar
Scott, A. D. and Reed, M. G., (1962) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron — III. Illite Soil Sci. Soc.Am. Proc. 26 4548.CrossRefGoogle Scholar
Stubican, V. and Roy, R., (1961) A new approach to assignment of infrared absorption bands in layer-structure silicates Z. Krist. 115 200214.CrossRefGoogle Scholar
Stubičan, V. and Roy, R., (1962) Isomorphous substitution and infrared spectra of the layer lattice silicates Am. Mineralogist 46 3251.Google Scholar
Sudo, T., Hayashi, H. and Shimoda, S., (1962) Mineralogi-cal problems of intermediate clay minerals Clays and Clay Minerals 9 378392.CrossRefGoogle Scholar
Tettenhorst, R. and Johns, W. D., (1963) Interstratification in montmorillonite Clays and Clay Minerals 13 8593.Google Scholar
Tomita, K. and Sudo, T., (1968) Conversion of mica into an interstratified mineral Rept. Faculty of Sci., Kagoshima Univ. 1 89119.Google Scholar
Tomita, K. and Sudo, T., (1968) Interstratified structure formed from a pre-heated mica by acid treatments Nature, Lond. 217 2043–1044.CrossRefGoogle Scholar
White, J. L., (1958) Layer charge and interlamellar lattice silicates Clays and Clay Minerals 4 133146.Google Scholar
White, J. L., (1958) Layer charge and interlamellar expansion in a muscovite Clays and Clay Minerals 5 289294.Google Scholar