Published online by Cambridge University Press: 28 February 2024
High-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), annular dark-field scanning transmission electron microscope (STEM) images, and electron nano-diffraction were used to examine structures of synthetic 2- and 6-line ferrihydrite specimens. HRTEM images of 2-line ferrihydrite (2LFh) show scattered small (~1-3 nm) areas with lattice fringes surrounded by areas free of fringes. All SAED patterns show two bright rings corresponding to d-values of ~0.15 and 0.25 nm; each ring has a conspicuous shoulder on each side. Faint rings corresponding to d-values of 0.08, 0.095, 0.100, 0.106-0.114 (very broad ring), and 0.122 nm are visible in strongly exposed SAED patterns. Nanodiffraction patterns show conspicuous streaks and a lack of superlattice formation.
HRTEM images of 6-line ferrihydrite (6LFh) display larger crystallites (typically ~5-6 nm) with lattice fringes visible in many thin areas. SAED patterns show rings corresponding to d-values of 0.148, 0.156, 0.176, 0.202, 0.227, and 0.25-0.26 nm and a shoulder extending between d-values of ~0.25 and 0.32 nm. Faint rings corresponding to d-values of 0.086, 0.093, 0.107, 0.112, 0.119, 0.125, and 0.135 nm are visible in strongly exposed SAED patterns. Small quantities of hematite, magnetite or maghemite, and an acicular material tentatively identified as goethite were observed in the 6-line ferrihydrite, but these quantities do not contribute significantly to the overall diffracted intensity from the sample.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.