Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T00:46:21.435Z Has data issue: false hasContentIssue false

Vicinal Faces on Synthetic Goethite Observed by Atomic Force Microscopy

Published online by Cambridge University Press:  28 February 2024

P. G. Weidler*
Affiliation:
Lehrstuhl für Bodenkunde TU München/Weihenstephan
H. E. Gaub
Affiliation:
Physik-Department E22 TU München/Garching
*
Present address: Institut für Terrestrische Ökologie ETH Zürich/Schlieren.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper atomic force microscopy-studies are reported suggesting the existence of vicinal faces on the (100) plane of artificially grown goethite. Goethite crystals are commonly regarded to have boundary planes of (100), (010) and (001) faces. In contradiction to these theoretical models TEM and SEM images exhibit (110) and (021) faces to be dominating. These goethite particles consist of many crystallographic coherent domains so that the existence of dislocations on the surfaces has to be assumed. These sites on the surfaces may serve as a nucleation site for the formation of steps. The vicinal faces on the (100) face found with the AFM are (021) faces. They influence the growth velocity of the (100) face to such a degree, that this face vanishes and only (110) faces remain as stable boundary surfaces. The (021) faces are also stable, but have the highest growth rate among the faces considered.

Type
Research Article
Copyright
Copyright © 1996, The Clay Minerals Society

References

Anonymous. 1993. Digital instruments, Nanoscope III Comand reference manual Vers. 3.0, Digital Instruments Inc., Santa Barbara, CA 93103 227 p.Google Scholar
Bennema, P.. 1974. Crystal growth from solution—Theory and experiment. J Crystal Growth 24(25): 7683.CrossRefGoogle Scholar
Berry, L., Post, B., Weissmann, S. and McMurdie, H.. 1980. JPCDS—Mineral powder diffraction file. International Center for Diffraction Data. 1395 p.Google Scholar
Binnig, G., Quate, C. and Gerber, C.. 1986. Atomic force microscope. Phys Rev Lett 26: 930933.CrossRefGoogle Scholar
Burton, W., Cabrera, N. and Frank, F.. 1951. The Growth of crystals and the equilibrium structure of their surfaces. Phil Trans Roy Soc p. 243: 299358.Google Scholar
Fritz, M., Radmacher, M. and Gaub, H.. 1994. Granula motion and membrane spreading on human platelets imaged with the AFM. Biophys J 66: 17.CrossRefGoogle Scholar
Hiemstra, T., van Riemsdijek, W. and Bolt, H.. 1989a. Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approach I. Model description and evaluation of intrinsic reaction constants. J Coll Interface Sci 133: 91104.CrossRefGoogle Scholar
Hiemstra, T., de Wit, J. and van Riemsdijek, W.. 1989b. Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approach II. Application to various important (hydr)oxides. J Coll Interface Sci 133: 104117.CrossRefGoogle Scholar
Janssen-vanRosmalen, R.. 1977. Crystal growth processes—The role of steps and of mass transfer in the fluid phase. [Ph.D. Thesis] TH Delft: Delft. 132 p.Google Scholar
Kleber, W.. 1990. Einführung in die kristallographie. Berlin: Verlag Technik. 17. 416 p.Google Scholar
Klug, H. and Alexander, L.. 1974. X-Ray diffraction procedures, 2nd edn. New York: John Wiley & Sons. 716 p.Google Scholar
Mussard, F. and Goldsztaub, S.. 1972. Sur la croissance du chlorate de sodium en solution. J Appl Cryst 13/14: 445448.Google Scholar
Radmacher, M., Tillmann, R., Fritz, M. and Gaub, H.. 1992. From molecules to cells—Imaging soft samples with the AFM. Science 257: 19001905.CrossRefGoogle Scholar
Scheidegger, A., Borkovec, M. and Sticher, H.. 1993. Coating of silica sand with goethite: Preparation and analytical identification. Geoderma 58: 4365.CrossRefGoogle Scholar
Schwertmann, U. and Cornell, R.. 1991. Iron oxides in the laboratory. VCH New York: Weinheim. 137 p.Google Scholar
Schwoebel, R. and Shipsey, E.. 1966. Step motion on crystal surfaces. J Appl Phys 37: 36823686.CrossRefGoogle Scholar
Stanjek, H.. 1991. Aluminium- und hydroxylsubstitution in synthetischen und natürlichen hämatiten [Ph.D. Thesis]. Weihenstephan: TU München. 194 p.Google Scholar
Wickramasinghe, H.. 1989. Scanned-probe microscopes. Sci Am Oct: 7481.CrossRefGoogle Scholar
Wickramasinghe, H.. 1990. Scanning probe microscopy—Current status and future trends. J Vac Sci Technol A8: 363386.Google Scholar
Wilke, K.. 1988. Kristallzüchtung. VEB Dtsch. Berlin: Verlag der Wissenschaften. 364 p.Google Scholar