Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T22:30:01.536Z Has data issue: false hasContentIssue false

Zeolite as Catalysts for the Synthesis of Amino Acids and Purines

Published online by Cambridge University Press:  01 July 2024

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper attempts to show that the catalytic properties of zeolitic material may play a role in the synthesis of simple biological molecules from gases commonly found in extraterrestrial atmospheres. Linde X and Y molecular sieves cation-exchanged by Ca2+ and Fe3+ have been heated in the presence of carbon monoxide and ammonia. Amino-acids and u.v. absorbing substances identified by paper chromatography have been extracted from the solid. HCN, the basic molecule involved in the synthesis of those substances has been detected in the gas phase. It is proposed, on the basis of i.r. results, that the amino-acids are hydrolysis products of an undefined polymer.

Résumé

Résumé

Cet article a pour but de montrer que les propriétés catalytiques d’un matériau zéolitique peuvent jouer un rôle dans la synthèse de molécules biologiques simples à partir de gaz trouvés couramment dans les atmosphères extraterrestres. Des tamis moléculaires Linde X et Y sous les formes cationiques Ca2+ et Fe3+ ont été chauffes en présence d’oxyde de carbone et d’ammoniac. Des acides aminés et des substances absorbant dans l’u.v. identifiés par chromatographie sur papier, ont été extraits du solide. HCN, la molécule de base impliquée dans la synthèse de ces substances a été détecté dans la phase gazeuse. On propose, sur la base des résultats infrarouges, que les acides aminés soient les produits d’hydrolyse d’un polymère non défini.

Kurzreferat

Kurzreferat

In diesem Artikel wird versucht darzulegen, dass die katalytischen Eigenschaften von zeolithartigem Material eine Rolle spielenkönnen bei der Synthese einfacher biologischer Moleküle aus üblicherweise in ausserhalb der Erdatmosphäre gefundenen Gasen. Linde X und Y Molekularsiebe, kationen —ausgetauscht durch Ca4+ und Fe3+, wurden erwärmt in der Gegenwart von Kohlenoxyd und und Ammoniak. Aus dem Feststoff wurden Aminosäuren und durch Papierchromatographie identifizierte U.V.-absorbierende Substanzen extrahiert. HCN, das grundlegende an des Synthese dieser Stoffe beteiligte Molekül, wurde in der Gasphase aufgefunden. Auf Grund der Ultrarotergebnisse wird angenommen, dass es sich bei den Aminosäuren um Produkte eines nichtdefinierten Polymers handelt.

Резюме

Резюме

В этой работе делается попытка показать, что каталитические характеристики цеолитного материала могут играть роль в синтезе простых биологических молекул газов обычно находящихся в неземных атмосферах. Молекулярные сита Linde X и Y с катионным обменом Са2+ и Fe3+ подогрели в присутствии окиси углерода и аммиака. Вещества, абсорбирующие аминокислоты и U.V., опознанные посредством бумажной хромотографии, экстрагировались из твердого вещества. HCN, основная вовлеченная в синтез этих веществ молекула была замечена в газовой фазе. Инфракрасные результаты приводят к предположению, что аминокислоты являются продуктами гидролиза неопознанного полимера.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1972

References

Akabori, S. (1957) In The Origin of Life on the Earth, p. 189, Pergamon Press, Oxford.Google Scholar
Angell, C. L. and Schaffer, P. C., (1966) I.R. spectroscopic investigations of zeolites and adsorbed molecules—II. Adsorbed carbon monoxide J. Phys. Chem. 70 14131418.CrossRefGoogle Scholar
Bellamy, L. J., (1958) The Infrared Spectra of Complex Molecules. New York Wiley.Google Scholar
Ferris, J. P. and Orgel, L. E., (1965) Aminoalononitrile and 4-amino-5-cyano-imidazole in hydrogen cyanide. Polymerization and adenine synthesis J. Am. Chem. Soc. 87 49764977.CrossRefGoogle Scholar
Fieldes, M. and Schofield, R. K., (1960) Mechanisms of iron adsorption by inorganic soil colloids N. Z. Jl. Soil Sci. 3 4 563579.Google Scholar
Fox, S. W., (1971) Chemical origins of cells Chem. Engng News 49 4653.CrossRefGoogle Scholar
Fox, S. W., Harada, K., Krampritz, G. and Mueller, G., (1970) Chemical origins of cells Chem. Engng News 48 8094.CrossRefGoogle Scholar
Fox, S. W. and Windsor, C. R., (1971) Formaldehyde and ammonia as precursors to prebiotic amino-acids Science 174 10381039.CrossRefGoogle Scholar
Fripiat, J. J., Cloos, P., Calicis, B. and Makay, K., (1966) Adsorption of amino-acids and peptides by montmorillonite. Identification of adsorbed species and decay products by infrared spectroscopy Proc. Int. Clay Conf. Jerusalem 1 233245.Google Scholar
Gettler, A. O. and Goldbaum, L., (1947) Detection and estimation of microquantities of cyanide Anal. Chem. 19 270271.CrossRefGoogle Scholar
Hay, R. L., (1966) Zeolites and Zeolitic Reactions in Sedimentary Rocks New York The Geological Society of America.CrossRefGoogle Scholar
Hayatsu, R., Studier, M. H., Oda, A., Fuse, K. and Anders, E., (1968) Origin of organic matter in early solar system —II. Nitrogen compounds Geochim. Cosmochim. Acta 32 175190.CrossRefGoogle Scholar
Jay, R. and Curtius, T., (1894) Über Methylenamidoacetonitril CH2:N-CH2-CN Ber. Chem. Ges. 27 5964.CrossRefGoogle Scholar
Keopian, J., (1968) The Origin of Life 2nd Edn. New York Reinhold 82.Google Scholar
Korizovski, Y. and Folman, M., (1966) I.R. spectrum and spectral shifts of HCN adsorbed on evaporated alkali halides Trans. Farad. Soc. 62 808820.Google Scholar
Matthews, C. N. and Moser, R. E., (1967) Peptide synthesis from hydrogen cyanide and water Nature 215 12301234.CrossRefGoogle ScholarPubMed
Miller, S. L., (1953) A production of amino-acids under possible primitive earth conditions Science 117 528529.CrossRefGoogle ScholarPubMed
Miller, S. L., (1957) The mechanism of synthesis of aminoacids by electric discharges Biochim. Biophys. Acta 23 480489.CrossRefGoogle ScholarPubMed
Oro, J. and Kamat, S. S., (1961) Amino-acid synthesis from hydrogen cyanide under possible primitive Earth conditions Nature 190 442443.CrossRefGoogle ScholarPubMed
Oro, J. and Kimball, A. P., (1962) Synthesis of purines under possible primitive Earth condition. Purine intermediates from HCN Arch. Biochem. Biophys. 96 293313.CrossRefGoogle Scholar
Oro, J. and Kimball, A. P., (1963) Synthesis of organic compounds by electric discharges Nature 197 802803.Google Scholar
Oro, J. and Kimball, A. P., (1967) Synthesis of organic compounds by electric discharges Nature 197 971973.CrossRefGoogle Scholar
Palm, C. and Calvin, M., (1962) Primordial organic chemistry—compounds resulting from electron irradiation of C14H4 J. Am. Chem. Soc. 84 21152121.CrossRefGoogle Scholar
Perry, R. W. and Keller, R. N. (1956) In Chemistry of the Coordination Compounds (Edited by Bailar, J. C.), Reinhold, New York.Google Scholar
Ponnamperuma, C., Lemmon, R. M., Mariner, R. and Calcin, M., (1963) Formation of adenine by electron irradiation of methane, ammonia and water Proc. Nat. Acad. Sci. 49 737740.CrossRefGoogle ScholarPubMed
Sanchez, R. A., Ferris, J. P. and Orgel, L. E., (1967) Studies in prebiotic synthesis of purines precursors and amino-acids from aqueous HCN J. Mol. Biol. 30 223253.Google Scholar
Strecker, A., (1850) Ueber die Künstliche Bildung der Milchsaüre und einen neuen, dem Glycocoll homologen Körper Ann. Chem. Pharm. 75 2745.CrossRefGoogle Scholar
Toupance, G., Sebban, G. and Buvet, R., (1970) Etapes initiales de la polymérisation de HCN et synthèses prébiologiques J. Chim. Phys, et Phys. Chim. Biol. 67 18701880.CrossRefGoogle Scholar
Viehe, H. G. and Janousek, Z., (1971) Dichloromethylene dimethyl ammonium chloride (phosgene-immonium chloride) versatile immonium sait Angew. Chem. 10 573577.CrossRefGoogle Scholar
Wakamatsu, H., Yamada, Y., Saito, T., Kumashiro, I. and Takeniski, T., (1966) Synthesis of adenine by oligomerization of hydrogen cyanide J. Org. Chem. 31 20392042.CrossRefGoogle Scholar