Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-28T20:46:44.735Z Has data issue: false hasContentIssue false

Zeolite Distribution in Volcaniclastic Deep-sea Sediments from the Tonga Trench Margin (SW Pacific)

Published online by Cambridge University Press:  28 February 2024

Frédéric Vitali
Affiliation:
Centre de Géochimie de la Surface, CNRS UPR n°6251, Institut de Géologie Strasbourg, 1 rue Blessig, 67084 Strasbourg Cédex, France
Gérard Blanc
Affiliation:
Centre de Géochimie de la Surface, CNRS UPR n°6251, Institut de Géologie Strasbourg, 1 rue Blessig, 67084 Strasbourg Cédex, France
Philippe Larqué
Affiliation:
Centre de Géochimie de la Surface, CNRS UPR n°6251, Institut de Géologie Strasbourg, 1 rue Blessig, 67084 Strasbourg Cédex, France

Abstract

605 m of sediments were cored in Hole 841 of the Ocean Drilling Program (ODP) at the Tonga Trench margin. The sedimentary sequence consists mainly of Miocene vitric siltstones, vitric sandstones, and volcanic conglomerates. A major consideration for selecting this site was the presence of abundant authigenic minerals (40% to 70% of the whole rock), which consist of K-feldspars, clays, thaumasite (Ca3Si(OH)6CO3SO4, 12H2O), and zeolites. The zeolite minerals include phillipsite, clinoptilolite, analcime, mordenite, chabazite, heulandite, wairakite, and erionite. The increasing amount of analcime from 257 mbsf to 470 mbsf, and the joint occurrence of mordenite and wairakite in this zone of Miocene tufts, seems to be induced by the heat flow from a major intrusive sequence of basaltic andesite sills and dikes. This abundance of analcime in response to the thermal pulse could explain the unusual Na-depleted porewater compositions observed in ODP Hole 841.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S. W., 1982. Nomenclature for regular interstratification. Clay Miner. 17: 243248.CrossRefGoogle Scholar
Bargar, K. E., Beeson, M. H., and Keith, T. E. C. 1981 . Zeolites in Yellowstone National Park. Miner. Record. 12: 2938.Google Scholar
Barth-Wirsching, U., and Höller, H. 1989 . Experimental studies on zeolite formation conditions. Eur. J. Mineral. 1: 489506.CrossRefGoogle Scholar
Blanc, G., 1992. Interstitial water chemistry, Leg 135 Lau Basin and Tonga Ridge. In Proceeding of the Ocean Drilling Program, Initial Report, Vol. 135. College Station, Texas.Google Scholar
Blanc, G., 1994. Geochemical studies on selected sediment samples from the back-arc Lau basin, Leg 135 ODP. Proceeding of the Ocean Drilling Program, Scientific Results 135: 689708.Google Scholar
Blanc, G., Stille, P., and Vitali, F. 1994 . Hydrogeochemistry in the Back-arc Lau Basin, ODP Leg 135. Proceeding of the Ocean Drilling Program, Scientific Results 135: 677688.Google Scholar
Boles, J. R., 1972. Composition, optical properties, cell dimensions and thermal stability of some heulandite group zeolites. Am. Miner. 57: 14631493.Google Scholar
Boles, J. R., 1977. Zeolites in low-grade metamorphic grades. In Mineralogy and Geology of Natural Zeolites. Mumpton, F. A., ed. Mineral. Soc. Am. 4: 103135.CrossRefGoogle Scholar
Boles, J. R., and Wise, W. S. Nature and origin of deep-sea clinoptilolite. In Natural Zeolites. Occurrence, Properties, Use. Sand, L. B., and Mumpton, F. A., 1978 eds. Pergamon Press, 235243.Google Scholar
Couture, R. A., 1977. Composition and origin of palygorskyte-rich and montmorillonite-rich zeolite-containing sediments from the Pacific ocean. Chemical Geology 19: 113130.CrossRefGoogle Scholar
Desprairies, A., and Jehanno, C. 1983 . Paragenèses minérales liées à des interactions basalte-sediment-eau de mer (Sites 465 et 456 des Legs 65 et 60 du D.S.D.P.). Sci. Géol. Bull. 36: 93110.Google Scholar
Egeberg, P. K., 1992. Thermodynamic aspects of Leg 126 interstitial waters. Proceeding of the Ocean Drilling Program, Scientific Results, Vol. 126, p. 519529.Google Scholar
Egeberg, P. K., and the Leg 126 Shipboard Scientific Party. 1990. Unusual composition of pore waters found in the Izu-Bonin fore-arc sedimentary basin. Nature 344: 215218.CrossRefGoogle Scholar
Giampaolo, C., 1986. Dehydration kinetics of thaumasite at ambient pressure. N. Jb. Miner. Mh. 3: 126134.Google Scholar
Gottardi, G., and Galli, E. 1985 . Natural Zeolites. Berlin: Springer Verlag, 409 pp.CrossRefGoogle Scholar
Hay, R. L., 1966. Zeolites and zeolitic reactions in sedimentary rocks. Geological Society of America. Special paper. 130 pp.CrossRefGoogle Scholar
Hay, R. L., 1986. Geologic occurrence of zeolites and some associated minerals. In New Developments in Zeolite Science Technology. Murakami, Y., Ijima, A., and Ward, J. W., eds. Proceeding of the 7th International Zeolite Conference p. 3540.CrossRefGoogle Scholar
Hooton, D. H., and Giorgetta, N. E. 1977 . Quantitative X-ray diffraction analysis by a direct calculation method. X-Ray Spectrometry 6: 25.CrossRefGoogle Scholar
Karpoff, A. M., France-Lanord, C., Lothe, F., and Karcher, P. 1992 . Miocene tuff from Mariana basin, ODP Leg 129, Site 802. A first deep-sea occurrence of Thaumasite. Proceeding of the Ocean Drilling Program, Scientific Results, Vol. 129, p. 119135.Google Scholar
Kastner, M., and Stonecipher, S. A. Zeolites in pelagic sediments of the Atlantic, Pacific, and Indian Oceans. In Natural Zeolites. Occurrence, Properties, Use. Sand, L. B., and Mumpton, F. A., 1978 eds. Pergamon Press, 199220.Google Scholar
Kristmannsdöttir, H., and Tomasson, J. Zeolite zones in geothermal areas Iceland. In Natural Zeolites. Occurrence, Properties, Use. Sand, L. B., and Mumpton, F. A., 1978 eds., Pergamon Press, 277284.Google Scholar
Kusakabe, H., Minato, H., Utada, M., and Yamanaka, T. 1981 . Phase relations of clinoptilolite, mordenite, analcime and albite with increasing pH, sodium ion concentration and temperature. University Tokyo Sci. Papers. College of general education. Vol. 31, p. 3959.Google Scholar
Liou, J. G., 1971. P-T stabilities of laumontite, wairakite, lawsonite, and related minerals in the system CaAl2Si2O8-SiO2-H2O. Journal of Petrology 12: 379411.CrossRefGoogle Scholar
Liou, J. G., Capitani, C. De, and Frey, M. 1991 . Zeolite equilibria in the system CaAl2Si2Os-NaAlSi3O8-SiO2-H2O. New Zealand Journal of Geology and Geophysics 34: 293301.CrossRefGoogle Scholar
Marsaglia, K. M., and Tazaki, K. 1992 . Diagenetic trends in Leg 126 sandstones. Proceeding of the Ocean Drilling Program, Scientific Results, Vol. 126, p. 125138.Google Scholar
Nakajima, W., and Ueda, S. 1990 . Syntheses of natural zeolites. Syntheses of heulandite-clinoptilolite, analcimewairakite, mordenite and ferrierite. Nendo Kagaku. 30: 5775 (in Japanese).Google Scholar
Parson, L., Hawkins, J. and Allan, J., 1992 et al. . Proceeding of the Ocean Drilling Program, Initial Report, Vol. 135. College Station, Texas, 677 pp.Google Scholar
Passaglia, E., 1970. The crystal chemistry of chabazites. Amer. Miner. 55: 12781301.Google Scholar
Passaglia, E., 1975. The crystal chemistry of mordenites. Contrib. Mineral. Petrol. 50: 6577.CrossRefGoogle Scholar
Passaglia, E., and Vezzalini, G. 1985 . Crystal chemistry of diagenetic zeolites in volcanoclastic deposits of Italy. Contrib. Mineral Petrol. 85: 190198.CrossRefGoogle Scholar
Passaglia, E., Pongiluppi, D., and Rinaldi, R. 1977 . Merlinoite, a new mineral of the zeolite group. N. Jb. Miner. Mh. 8: 355364.Google Scholar
Schöps, D., and Herzig, P. M. 1994 . Occurrence of Thaumasite in Lau Basin andesite of ODP Hole 841B, Leg 135. Proceeding of the Ocean Drilling Program, Scientific Results 135: 689708.Google Scholar
Seki, Y., 1973. Distribution and modes of occurrence of wairakites. J. Geol. Soc. Jpn. 79: 521527.CrossRefGoogle Scholar
Seki, Y., Onuki, H., Okumura, K., and Takashima, I. 1969 . Zeolite distribution in the Katayama geothermal area. Jpn. J. Geol. Geogr. 40: 6369.Google Scholar
Sheppard, R. A. and Gude, A., 3rd, and Fitzpatrick, J. J. 1988 . Distribution, characterization, and genesis of mordenite in Miocene tuffs at Yucca Mountains, Nye County, Nevada. U.S. Geol. Surv. Bull. 1777: 122.Google Scholar
Steiner, A., 1955. Wairakite, the calcium analogue of analcime, a new mineral. Miner. Mag. 30: 691698.Google Scholar
Stonecipher, S. A., 1976. Origin, distribution and diagenesis of phillipsite and clinoptilolite in deep-sea sediments. Chemical Geology 17: 307318.CrossRefGoogle Scholar
Surdam, R. C., 1973. Low-grade metamorphism of tuffaceous rocks in the Karmutsen Group, Vancouver Island, British Columbia. Geological Society of America Bulletin 84: 19111922.2.0.CO;2>CrossRefGoogle Scholar
Taylor, B., Fujoka, K. and Janecek, T. R., 1990 et al. . Proceeding of the Ocean Drilling Program, Initial Report, Vol. 129. College Station, Texas, 1002 pp.Google Scholar
Taylor, H. P. Jr. 1971. Oxygen isotope evidence for large-scale interaction between intrusions, Western Cascade Range, Oregon. J. Geophys. Res. 76: 78557874.CrossRefGoogle Scholar
Tazaki, K., and Fyfe, W. S. 1992 . Diagenetic and hydrothermal mineral alteration observed in Izu-Bonin deep-sea sediments, Leg 126. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 126, p. 101112.Google Scholar
Vitali, F., Blanc, G., Larqué, P., and Samuel, J. 1995 . Geochemical trends of Site 840 from the Tonga Platform. A comparison with the others sites from Leg 135 ODP. Oceanologica Acta (in press).Google Scholar