Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-21T13:38:32.514Z Has data issue: false hasContentIssue false

On sets of points with few odd secants

Published online by Cambridge University Press:  10 October 2019

Simeon Ball*
Affiliation:
Departament de Matemàtiques, Universitat Politècnica de Catalunya, Mòdul C3, Campus Nord, c/ Jordi Girona 1–3, 08034 Barcelona, Spain
Bence Csajbók
Affiliation:
MTA–ELTE Geometric and Algebraic Combinatorics Research Group, ELTE Eötvös Loránd University, Budapest, Hungary, Department of Geometry, 1117 Budapest, Pázmány P. stny. 1/C, Hungary
*
*Corresponding author. Email: simeon@ma4.upc.edu

Abstract

We prove that, for q odd, a set of q + 2 points in the projective plane over the field with q elements has at least 2qc odd secants, where c is a constant and an odd secant is a line incident with an odd number of points of the set.

Type
Paper
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first author acknowledges the support of project MTM2017-82166-P of the Spanish Ministerio de Economía y Competitividad.

The second author is supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The second author acknowledges the support of OTKA grant K 124950.

References

Balister, P., Bollobás, B., Füredi, Z. and Thompson, J. (2014) Minimal symmetric differences of lines in projective planes. J. Combin. Des. 22 435451.CrossRefGoogle Scholar
Ball, S. (2012) On sets of vectors of a finite vector space in which every subset of basis size is a basis. J. Eur. Math. Soc. 14 733748.CrossRefGoogle Scholar
Ball, S. and Lavrauw, M. (2018) Planar arcs. J. Combin. Theory Ser. A 160 261287.CrossRefGoogle Scholar
Bichara, A. and Korchmáros, G. (1982) Note on (q + 2) -sets in a Galois plane of order q. Ann. Discrete Math. 14 117122.Google Scholar
Blokhuis, A. (1991) Characterization of seminuclear sets in a finite projective plane. J. Geom. 40 1519.CrossRefGoogle Scholar
Blokhuis, A. and Bruen, A. A. (1989) The minimal number of lines intersected by a set of q + 2 points, blocking sets, and intersecting circles. J. Combin. Theory Ser. A 50 308315.CrossRefGoogle Scholar
Blokhuis, A. and Mazzocca, F. (2008) The finite field Kakeya problem. In Building Bridges, Vol. 19 of Bolyai Soc. Math. Stud., Springer, pp. 205218.Google Scholar
Blokhuis, A., Seress, A. and Wilbrink, H. A. (1991) On sets of points without tangents. Mitt. Math. Sem. Univ. Giessen 201 3944.Google Scholar
Csajbók, B. (2018) On bisecants of Rédei type blocking sets and applications. Combinatorica 38 143166.CrossRefGoogle Scholar
Segre, B. (1955) Ovals in a finite projective plane. Canad. J. Math. 7 414416.CrossRefGoogle Scholar
Segre, B. (1967) Introduction to Galois geometries. Atti Accad. Naz. Lincei Mem. 8 133236.Google Scholar
Szönyi, T. and Weiner, Z. (2014) On the stability of the sets of even type. Adv. Math. 267 381394.Google Scholar
Vandendriessche, P. (2015) On small line sets with few odd-points. Des. Codes Cryptogr. 75 453463.CrossRefGoogle Scholar