Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T15:36:45.176Z Has data issue: false hasContentIssue false

First-Principles Calculations of Shocked Fluid Helium in Partially Ionized Region

Published online by Cambridge University Press:  20 August 2015

Cong Wang*
Affiliation:
LCP, Institute of Applied Physics and Computational Mathematics, P.O. Box8009, Beijing 100088, China
Xian-Tu He*
Affiliation:
LCP, Institute of Applied Physics and Computational Mathematics, P.O. Box8009, Beijing 100088, China Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Ping Zhang*
Affiliation:
LCP, Institute of Applied Physics and Computational Mathematics, P.O. Box8009, Beijing 100088, China Center for Applied Physics and Technology, Peking University, Beijing 100871, China
*
Get access

Abstract

Quantum molecular dynamic simulations have been employed to study the equation of state (EOS) of fluid helium under shock compressions. The principal Hugoniot is determined from EOS, where corrections from atomic ionization are added onto the calculated data. Our simulation results indicate that principal Hugoniot shows good agreement with gas gun and laser driven experiments, and maximum compression ratio of 5.16 is reached at 106 GPa.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ernstorfer, R., Harb, M., Hebeisen, C. T., Sciaini, G., Dartigalongue, T., and Miller, R. J. D., The formation of warm dense matter: Experimental evidence for electronic bond hardening in gold, Science, 323 (2009), 1033–1037.Google Scholar
[2]Nellis, W. J., Dynamic compression of materials: metallization of fluid hydrogen at high pressures, Rep. Prog. Phys., 69 (2006), 1479.Google Scholar
[3]Hicks, D. G., Boehly, T. R., Celliers, P. M., Eggert, J. H., Moon, S. J., Meyerhofer, D. D., and Collins, G. W., Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa, Phys. Rev. B, 79 (2009), 014112.Google Scholar
[4]Philippe, F., Casner, A., Caillaud, T., Landoas, O., Monteil, M. C., Liberatore, S., Park, H. S., Amendt, P., Robey, H., Sorce, C., Li, C. K., Seguin, F., Rosenberg, M., Petrasso, R., Glebov, V., and Stoeckl, C., Experimental demonstration of X-ray drive enhancement with rugby-shaped hohlraums, Phys. Rev. Lett., 104 (2010), 035004.Google Scholar
[5]Lorenzen, W., Holst, B., and Redmer, R., Demixing of hydrogen and helium at megabar pressures, Phys. Rev. Lett., 102 (2009), 115701.Google Scholar
[6]Stevenson, D. J. and Salpeter, E. E., The phase diagram and transport properties for hydrogen-helium fluid planets, Astrophys. J. Suppl., 35 (1977), 221–237.Google Scholar
[7]Stevenson, D. J. and Salpeter, E. E., The dynamics and helium distribution in hydrogen-helium fluid planets Astrophys. J. Suppl., 35 (1977), 239–261.Google Scholar
[8]Saumon, D., Chabrier, G., and Van Horn, H. M., An equation of state for low-mass stars and giant planets, Astrophys. J. Suppl. Ser., 99 (1995), 713–41.Google Scholar
[9]Ternovoi, V.Ya., Kvitov, S. V., Pyalling, A. A., Filimonov, A. S. and Fortov, V. E., Experimental determination of the conditions for the transition of Jupiters atmosphere to the conducting state, JETP Lett., 79 (2004), 6–9.Google Scholar
[10]Vorberger, J., Tamblyn, I., Militzer, B., and Bonev, S. A., Hydrogen-helium mixtures in the interiors of giant planets, Phys. Rev. B., 75 (2007), 024206.Google Scholar
[11]Perryman, M. A. C., Extra-solar planets, Rep. Prog. Phys., 63 (2000), 1209–1272.Google Scholar
[12]Nellis, W. J., Holmes, N. C., Mitchell, A. C., Trainor, R. J., Governo, G. K., Ross, M., and Young, D. A., Shock Compression of liquid helium to 56 GPa (560 kbar), Phys. Rev. Lett., 53 (1984), 1248.Google Scholar
[13]Eggert, J., Brygoo, S., Loubeyre, P., McWilliams, R. S., Celliers, P. M., Hicks, D. G., Boehly, T. R., Jeanloz, R., and Collins, G.W., Hugoniot data for helium in the ionization regime, Phys. Rev. Lett., 100 (2008), 124503.Google Scholar
[14]Knudson, M. D. and Desjarlais, M. P., Shock compression of quartz to 1.6 TPa: Redefining a pressure standard, Phys. Rev. Lett., 103 (2009), 225501.Google Scholar
[15]Ross, M. and Young, D. A., Helium at high density, Phys. Lett. A, 118 (1986), 463–466.Google Scholar
[16]Chen, Q. F., Zhang, Y., Cai, L. C., Gu, Y.J., and Jing, F. Q., Self-consistent variational calculation of the dense fluid helium in the region of partial ionization, Phys. Plasma., 14 (2007), 012703.Google Scholar
[17]Kowalski, P. M., Mazevet, S., Saumon, D., and Challacombe, M., Equation of state and optical properties of warm dense helium, Phys. Rev. B, 76 (2007), 075112.Google Scholar
[18]Militzer, B., First principles calculations of shock compressed fluid helium, Phys. Rev. Lett., 97 (2006), 175501.Google Scholar
[19]Ross, M., Rogers, F., Winter, N., and Collins, G., Activity expansion calculation of shock-compressed helium: The liquid Hugoniot, Phys. Rev. B, 76 (2007), 020502(R).Google Scholar
[20]Wang, C. and Zhang, P., Ab initio study of shock compressed oxygen, J. Chem. Phys., 132 (2010), 154307.CrossRefGoogle ScholarPubMed
[21]Wang, C. and Zhang, P., The equation of state and nonmetal-metal transition of benzene under shock compression, J. Appl. Phys., 107 (2010), 083502.Google Scholar
[22]Kresse, G. and Hafner, J., Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47 (1993), R558.Google Scholar
[23]Kresse, G. and Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54 (1996), 11169.Google Scholar
[24]Lenosky, T.Bickham, S., Kress, J., and Collins, L., Density-functional calculation of the Hugoniot of shocked liquid deuterium, Phys. Rev. B, 61 (2000), 1.Google Scholar
[25]Perdew, J. P., Electronic Structure of Solids, Akademie Verlag, Berlin (1991).Google Scholar
[26]Blöchl, P. E., Projector augmented-wave method, Phys. Rev. B, 50 (1994), 17953.CrossRefGoogle ScholarPubMed
[27]Noseé, S., A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81 (1984), 511.Google Scholar
[28] The time steps have been taken as where a = (3/4πni)1/3 is the ionic sphere radius (и, is the ionic number density), kßT presents the kinetic energy, and тце is the ionic mass.Google Scholar
[29]Holst, B., Redmer, R., and Desjarlais, M. P., Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations, Phys. Rev. B, 77 (2008), 184201.Google Scholar
[30]Mazevet, S., Desjarlais, M. P., Collins, L. A., Kress, J. D., and Magee, N. H., Simulations of the optical properties of warm dense aluminum, Phys. Rev. E, 71 (2005), 016409.Google Scholar
[31]Wang, C., He, X. T., and Zhang, P., Hugoniot of shocked liquid deuterium up to 300 GPa: Quantum molecular dynamic simulations, J. Appl. Phys., 108 (2010), 044909.Google Scholar
[32]Aziz, R. A., Janzen, A. R., and Moldover, M. R., Ab initio calculations for helium: A standard for transport property measurements, Phys. Rev. Lett., 74 (1995), 1586.Google Scholar
[33]Chen, Q. F., private communication, (2010).Google Scholar