Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-17T09:34:30.445Z Has data issue: false hasContentIssue false

Attractors are not algebraic

Published online by Cambridge University Press:  18 April 2024

Yeuk Hay Joshua Lam
Affiliation:
Institut für Mathematik–Alg.Geo., Humboldt Universität Berlin, Rudower Chaussee 25, Berlin, Germany joshua.lam@hu-berlin.de
Arnav Tripathy
Affiliation:
Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Huairou District, Beijing 101408, PR China arnav.tripathy@gmail.com

Abstract

The attractor conjecture for Calabi–Yau moduli spaces predicts the algebraicity of the moduli values of certain isolated points picked out by Hodge-theoretic conditions. Using tools from transcendence theory, we provide a family of counterexamples to the attractor conjecture in almost all odd dimensions conditional on a specific case of the Zilber–Pink conjecture in unlikely intersection theory; these Calabi–Yau manifolds were first studied by Dolgachev. We also give constructions of new families of Calabi–Yau varieties, analogous to the mirror quintic family, with all middle Hodge numbers equal to one, which would also give counterexamples to the attractor conjecture.

Type
Research Article
Copyright
© 2024 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

AT was supported under NSF MSPRF grant 1705008 during the course of this work.

References

Bakker, B., Grimm, T. W., Schnell, C. and Tsimerman, J., Finiteness for self-dual classes in integral variations of Hodge structure, Preprint (2021), arXiv:2112.06995.Google Scholar
Bogomolov, F. A., Hamiltonian Kähler manifolds, Soviet Math. Dokl. 19 (1978), 14621465.Google Scholar
Brunner, I. and Roggenkamp, D., Attractor flows from defect lines, J. Phys. A 44 (2011), 075402.10.1088/1751-8113/44/7/075402CrossRefGoogle Scholar
Candelas, P., de la Ossa, X., Elmi, M. and van Straten, D., A one parameter family of Calabi-Yau manifolds with attractor points of rank two (2019), arXiv:1912.06146.Google Scholar
Daw, C. and Ren, J., Applications of the hyperbolic Ax-Schanuel conjecture, Compos. Math. 154 (2018), 18431888.CrossRefGoogle Scholar
Deligne, P. and Mostow, G. D., Monodromy of hypergeometric functions and nonlattice integral monodromy, Publ. Math. Inst. Hautes Études Sci. 63 (1986), 589.CrossRefGoogle Scholar
Denef, F. and Douglas, M. R., Distributions of flux vacua, J. High Energy Phys. 2004(5) (2004), 072.CrossRefGoogle Scholar
Dolgachev, I., van Geemen, B. and Kondo, S., A complex ball uniformization of the moduli space of cubic surfaces via periods of K3 surfaces, J. Reine Angew. Math. 588 (2005), 99148.CrossRefGoogle Scholar
Dolgachev, I. V. and Kondo, S., Moduli of K3 surfaces and complex ball quotients, in Arithmetic and geometry around hypergeometric functions, Progress in Mathematics, vol. 260 (Birkhäuser, Basel, 2007), 43100.10.1007/978-3-7643-8284-1_3CrossRefGoogle Scholar
Douglas, M. R., The statistics of string/M theory vacua, J. High Energy Phys. 2003(5) (2003), 046.CrossRefGoogle Scholar
Douglas, M. R., Shiffman, B. and Zelditch, S., Critical points and supersymmetric vacua. I, Comm. Math. Phys. 252 (2004), 325358.10.1007/s00220-004-1228-yCrossRefGoogle Scholar
Douglas, M. R., Shiffman, B. and Zelditch, S., Critical points and supersymmetric vacua. II. Asymptotics and extremal metrics, J. Differential Geom. 72 (2006), 381427.CrossRefGoogle Scholar
Douglas, M. R., Shiffman, B. and Zelditch, S., Critical points and supersymmetric vacua. III. String/M models, Comm. Math. Phys. 265 (2006), 617671.10.1007/s00220-006-0003-7CrossRefGoogle Scholar
Engel, P. and Smillie, P., The number of convex tilings of the sphere by triangles, squares, or hexagons, Geom. Topol. 22 (2018), 28392864.10.2140/gt.2018.22.2839CrossRefGoogle Scholar
Ferrara, S., Kallosh, R. and Strominger, A., $N=2$ extremal black holes, Phys. Rev. D 52 (1995), R5412.10.1103/PhysRevD.52.R5412CrossRefGoogle ScholarPubMed
Klingler, B., Otwinowska, A. and Urbanik, D., On the fields of definition of Hodge loci (2020), arXiv:2010.03359.Google Scholar
Kontsevich, M. and Soibelman, Y., Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror symmetry, in Homological mirror symmetry and tropical geometry, Lecture Notes of the Unione Matematica Italiana, vol. 15 (Springer, Cham, 2014), 197308.10.1007/978-3-319-06514-4_6CrossRefGoogle Scholar
Lange, H. and Ortega, A., Prym varieties of cyclic coverings, Geom. Dedicata 150 (2011), 391403.CrossRefGoogle Scholar
Liu, K. and Yin, C., Quantum correction and the moduli spaces of Calabi-Yau manifolds, Preprint (2014), arXiv:1411.0069.Google Scholar
Looijenga, E., Uniformization by Lauricella functions: an overview of the theory of Deligne-Mostow, in Arithmetic and geometry around hypergeometric functions, Progress in Mathematics, vol. 260 (Birkhäuser, Basel, 2007), 207244.10.1007/978-3-7643-8284-1_8CrossRefGoogle Scholar
Moonen, B., Special subvarieties arising from families of cyclic covers of the projective line, Doc. Math. 15 (2010), 793819.10.4171/dm/314CrossRefGoogle Scholar
Moore, G., Arithmetic and attractors, Preprint (1998), arXiv:9807087.Google Scholar
Moore, G., Strings, arithmetic, in Frontiers in number theory, physics, and geometry. II (Springer, Berlin, 2007), 303359.Google Scholar
Orr, M., Unlikely intersections with Hecke translates of a special subvariety, J. Eur. Math. Soc. 23 (2020), 128.10.4171/jems/1005CrossRefGoogle Scholar
Pink, R., A combination of the conjectures of Mordell-Lang and André-Oort, in Geometric methods in algebra and number theory, Progress in Mathematics, vol. 235 (Birkhäuser, Boston, 2005), 251282.10.1007/0-8176-4417-2_11CrossRefGoogle Scholar
Sheng, M., Xu, J. and Zuo, K., Maximal families of Calabi-Yau manifolds with minimal length Yukawa coupling, Commun. Math. Stat. 1 (2013), 7392.CrossRefGoogle Scholar
Sheng, M., Xu, J. and Zuo, K., The monodromy groups of Dolgachev's CY moduli spaces are Zariski dense, Adv. Math. 272 (2015), 699742.10.1016/j.aim.2014.12.017CrossRefGoogle Scholar
Shiga, H. and Wolfart, J., Criteria for complex multiplication and transcendence properties of automorphic functions, J. Reine Angew. Math. 463 (1995), 125.Google Scholar
The Stacks project authors, The stacks project (2023), https://stacks.math.columbia.edu.Google Scholar
Tian, G., Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Peterson-Weil metric, in Mathematical aspects of string theory (World Scientific, 1987), 629–646.CrossRefGoogle Scholar
Todorov, A. N., The Weil-Petersson geometry of the moduli space of $SU(n\geqq 3)$ (Calabi-Yau) manifolds I. Comm. Math. Phys. 126 (1989), 325346.10.1007/BF02125128CrossRefGoogle Scholar