Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T02:48:11.306Z Has data issue: false hasContentIssue false

Geometric Weil representation: local field case

Published online by Cambridge University Press:  01 January 2009

Vincent Lafforgue
Affiliation:
Institut de Mathématiques, Université Paris 6, 175, rue du Chevaleret, 75013 Paris, France (email: vlafforg@math.jussieu.fr)
Sergey Lysenko
Affiliation:
Institut de Mathématiques, Université Paris 6, 175, rue du Chevaleret, 75013 Paris, France (email: vlafforg@math.jussieu.fr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let k be an algebraically closed field of characteristic greater than 2, and let F=k((t)) and G=𝕊p2d. In this paper we propose a geometric analog of the Weil representation of the metaplectic group . This is a category of certain perverse sheaves on some stack, on which acts by functors. This construction will be used by Lysenko (in [Geometric theta-lifting for the dual pair S𝕆2m, 𝕊p2n, math.RT/0701170] and subsequent publications) for the proof of the geometric Langlands functoriality for some dual reductive pairs.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2009

References

[1]Drinfeld, B., Quantization of the Hitchin integrable system and Hecke eigensheaves, Preprint, downloadable from http://www.math.utexas.edu/∼benzvi/Langlands.html.Google Scholar
[2]Delign, P., Métaplectique, A letter to Kazhdan (1982).Google Scholar
[3]Gerardin, P., Weil representations associated to finite fields, J. Algebra 46 (1977), 54102.Google Scholar
[4]Gurevich, S. and Hadani, R., Proof of the Kurlberg–Rudnick rate conjecture, C. R. Math. Acad. Sci. Paris 342 (2006), 6972, math-ph/0404074.Google Scholar
[5]Gurevich, S. and Hadani, R., Heisenberg realizations, eigenfunctions and proof of the KurlbergRudnik supremum conjecture, math-ph/0511036..Google Scholar
[6]Gurevich, S. and Hadani, R., Quantization of symplectic vector spaces over finite fields, arXiv: 0705.4556.Google Scholar
[7]Howe, R., θ-series and invariant theory, Proc. Symp. Pure Math. 33 (1979), 275285, part 1.Google Scholar
[8]Lion, G. and Vergne, M., The Weil representation, in Maslov index and theta series, Progress in Mathematics, vol. 6 (Birkhäuser, Boston, MA, 1980).Google Scholar
[9]Lysenko, S., Moduli of metaplectic bundles on curves and theta-sheaves, Ann. Sci. École Norm. Sup. (4) 39 (2006), 415466.CrossRefGoogle Scholar
[10]Lysenko, S., Geometric theta-lifting for the dual pair S𝕆2m,𝕊p2n, math.RT/0701170.Google Scholar
[11]Moeglin, C., Vignéras, M.-F. and Waldspurger, J.L., Correspondances de Howe sur un corps p-adique, Lecture Notes in Mathematics, vol. 1291 (Springer, Berlin, 1987).Google Scholar
[12]Prasad, D., A brief survey on the theta correspondence, in Number theory (Tiruchirapalli, 1996), Contemporary Mathematics, vol. 210 (American Mathematical Society, Providence, RI, 1998), 171193.CrossRefGoogle Scholar
[13]Weil, A., Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143211.CrossRefGoogle Scholar