No CrossRef data available.
 $\unicode[STIX]{x1D6EC}$ -adic
$\unicode[STIX]{x1D6EC}$ -adic  $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$ -modules and
$(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$ -modules and  $\unicode[STIX]{x1D6EC}$ -adic Hodge theory
$\unicode[STIX]{x1D6EC}$ -adic Hodge theoryPublished online by Cambridge University Press: 08 March 2018
We construct the  $\unicode[STIX]{x1D6EC}$ -adic crystalline and Dieudonné analogues of Hida’s ordinary
$\unicode[STIX]{x1D6EC}$ -adic crystalline and Dieudonné analogues of Hida’s ordinary  $\unicode[STIX]{x1D6EC}$ -adic étale cohomology, and employ integral
$\unicode[STIX]{x1D6EC}$ -adic étale cohomology, and employ integral  $p$ -adic Hodge theory to prove
$p$ -adic Hodge theory to prove  $\unicode[STIX]{x1D6EC}$ -adic comparison isomorphisms between these cohomologies and the
$\unicode[STIX]{x1D6EC}$ -adic comparison isomorphisms between these cohomologies and the  $\unicode[STIX]{x1D6EC}$ -adic de Rham cohomology studied in Cais [The geometry of Hida families I:
$\unicode[STIX]{x1D6EC}$ -adic de Rham cohomology studied in Cais [The geometry of Hida families I: $\unicode[STIX]{x1D6EC}$ -adic de Rham cohomology, Math. Ann. (2017), doi:10.1007/s00208-017-1608-1] as well as Hida’s
$\unicode[STIX]{x1D6EC}$ -adic de Rham cohomology, Math. Ann. (2017), doi:10.1007/s00208-017-1608-1] as well as Hida’s  $\unicode[STIX]{x1D6EC}$ -adic étale cohomology. As applications of our work, we provide a ‘cohomological’ construction of the family of
$\unicode[STIX]{x1D6EC}$ -adic étale cohomology. As applications of our work, we provide a ‘cohomological’ construction of the family of  $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$ -modules attached to Hida’s ordinary
$(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$ -modules attached to Hida’s ordinary  $\unicode[STIX]{x1D6EC}$ -adic étale cohomology by Dee [
$\unicode[STIX]{x1D6EC}$ -adic étale cohomology by Dee [ $\unicode[STIX]{x1D6F7}$ –
$\unicode[STIX]{x1D6F7}$ – $\unicode[STIX]{x1D6E4}$ modules for families of Galois representations, J. Algebra 235 (2001), 636–664], and we give a new and purely geometric proof of Hida’s finiteness and control theorems. We also prove suitable
$\unicode[STIX]{x1D6E4}$ modules for families of Galois representations, J. Algebra 235 (2001), 636–664], and we give a new and purely geometric proof of Hida’s finiteness and control theorems. We also prove suitable  $\unicode[STIX]{x1D6EC}$ -adic duality theorems for each of the cohomologies we construct.
$\unicode[STIX]{x1D6EC}$ -adic duality theorems for each of the cohomologies we construct.
 $p$
               -adiques de groupes
$p$
               -adiques de groupes 
                   $p$
               -adiques. I. Représentations galoisiennes et
$p$
               -adiques. I. Représentations galoisiennes et 
                   $(\unicode[STIX]{x1D719},\unicode[STIX]{x1D6E4})$
               -modules.Google Scholar
$(\unicode[STIX]{x1D719},\unicode[STIX]{x1D6E4})$
               -modules.Google Scholar $\unicode[STIX]{x1D6EC}$
               -adic
$\unicode[STIX]{x1D6EC}$
               -adic 
               
                   $p$
               -divisible groups, I, Unpublished notes from a talk at the Centre de Recherches Mathématiques, Montréal (2005), http://www.math.ucla.edu/∼hida/CRM1.pdf.Google Scholar
$p$
               -divisible groups, I, Unpublished notes from a talk at the Centre de Recherches Mathématiques, Montréal (2005), http://www.math.ucla.edu/∼hida/CRM1.pdf.Google Scholar $\unicode[STIX]{x1D6EC}$
               -adic
$\unicode[STIX]{x1D6EC}$
               -adic 
               
                   $p$
               -divisible groups, II, Unpublished notes from a talk at the Centre de Recherches Mathématiques, Montréal (2005), http://www.math.ucla.edu/∼hida/CRM2.pdf.Google Scholar
$p$
               -divisible groups, II, Unpublished notes from a talk at the Centre de Recherches Mathématiques, Montréal (2005), http://www.math.ucla.edu/∼hida/CRM2.pdf.Google Scholar $\unicode[STIX]{x1D6EC}$
               -adic Eichler–Shimura isomorphism and
$\unicode[STIX]{x1D6EC}$
               -adic Eichler–Shimura isomorphism and 
               
                   $p$
               -adic etale cohomology, Unpublished note (2013), arXiv:1303.0406.Google Scholar
$p$
               -adic etale cohomology, Unpublished note (2013), arXiv:1303.0406.Google Scholar