Article contents
The $l$-parity conjecture for abelian varieties over function fields of characteristic $p>0$
Published online by Cambridge University Press: 10 March 2014
Abstract
Let $A/K$ be an abelian variety over a function field of characteristic $p>0$ and let $\ell $ be a prime number ($\ell =p$ allowed). We prove the following: the parity of the corank $r_\ell $ of the $\ell $-discrete Selmer group of $A/K$ coincides with the parity of the order at $s=1$ of the Hasse–Weil $L$-function of $A/K$. We also prove the analogous parity result for pure $\ell $-adic sheaves endowed with a nice pairing and in particular for the congruence Zeta function of a projective smooth variety over a finite field. Finally, we prove that the full Birch and Swinnerton-Dyer conjecture is equivalent to the Artin–Tate conjecture.
- Type
- Research Article
- Information
- Copyright
- © The Author(s) 2014
References
- 3
- Cited by