Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-20T23:26:21.643Z Has data issue: false hasContentIssue false

q-stability conditions on Calabi–Yau-𝕏 categories

Published online by Cambridge University Press:  07 June 2023

Akishi Ikeda
Affiliation:
Department of Mathematics, Josai University, Saitama 338 8570, Japan akishi@josai.ac.jp
Yu Qiu
Affiliation:
Yau Mathematical Sciences Center and Department of Mathematical Sciences, Tsinghua University, 100084 Beijing, PR China yu.qiu@bath.edu Beijing Institute of Mathematical Sciences and Applications, Yanqi Lake, 101408 Beijing, PR China

Abstract

We introduce $q$-stability conditions $(\sigma,s)$ on Calabi–Yau-$\mathbb {X}$ categories $\mathcal {D}_\mathbb {X}$, where $\sigma$ is a stability condition on $\mathcal {D}_\mathbb {X}$ and $s$ a complex number. We prove the corresponding deformation theorem, that $\operatorname {QStab}_s\mathcal {D}_\mathbb {X}$ is a complex manifold of dimension $n$ for fixed $s$, where $n$ is the rank of the Grothendieck group of $\mathcal {D}_\mathbb {X}$ over $\mathbb {Z}[q^{\pm 1}]$. When $s=N$ is an integer, we show that $q$-stability conditions can be identified with the stability conditions on $\mathcal {D}_N$, provided the orbit category $\mathcal {D}_N=\mathcal {D}_\mathbb {X}/[\mathbb {X}-N]$ is well defined. To attack the questions on existence and deformation along the $s$ direction, we introduce the inducing method. Sufficient and necessary conditions are given, for a stability condition on an $\mathbb {X}$-baric heart (that is, a usual triangulated category) of $\mathcal {D}_\mathbb {X}$ to induce $q$-stability conditions on $\mathcal {D}_\mathbb {X}$. As a consequence, we show that the space $\operatorname {QStab}^\oplus \mathcal {D}_\mathbb {X}$ of (induced) open $q$-stability conditions is a complex manifold of dimension $n+1$. Our motivating examples for $\mathcal {D}_\mathbb {X}$ are coming from (Keller's) Calabi–Yau-$\mathbb {X}$ completions of dg algebras. In the case of smooth projective varieties, the $\mathbb {C}^*$-equivariant coherent sheaves on canonical bundles provide the Calabi–Yau-$\mathbb {X}$ categories. Another application is that we show perfect derived categories can be realized as cluster-$\mathbb {X}$ categories for acyclic quivers.

MSC classification

Type
Research Article
Copyright
© 2023 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achar, P. and Treumann, D., Baric structures on triangulated categories and coherent sheaves, Int. Math. Res. Not. IMRN 16 (2011), 36883743.Google Scholar
Amiot, C., Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier 59 (2009), 25252590.10.5802/aif.2499CrossRefGoogle Scholar
Aspinwall, P., Bridgeland, T., Craw, A., Douglas, M., Gross, M., Kapustin, A., Moore, G., Segal, G., Szendroi, B. and Wilson, P., Dirichlet branes and mirror symmetry, Clay Mathematics Monographs, vol. 4 (American Mathematical Society, Providence, RI, 2009).Google Scholar
Bayer, A. and Macr, E., The space of stability conditions on the local projective plane, Duke Math. J. 160 (2011), 263322.10.1215/00127094-1444249CrossRefGoogle Scholar
Bondal, A. and van den Bergh, M., Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), 136.10.17323/1609-4514-2003-3-1-1-36CrossRefGoogle Scholar
Bridgeland, T., Stability conditions on a non-compact Calabi–Yau threefold, Comm. Math. Phys. 266 (2006), 715733.10.1007/s00220-006-0048-7CrossRefGoogle Scholar
Bridgeland, T., Stability conditions on triangulated categories, Ann. Math. 166 (2007), 317345.10.4007/annals.2007.166.317CrossRefGoogle Scholar
Bridgeland, T., Stability conditions on K$3$ surfaces, Duke Math. J. 141 (2008), 241291.10.1215/S0012-7094-08-14122-5CrossRefGoogle Scholar
Bridgeland, T., Spaces of stability conditions, in Algebraic geometry–Seattle 2005, Proceedings of Symposia in Pure Mathematics, vol. 80 (American Mathematical Society, Providence, RI, 2009), 121.Google Scholar
Bridgeland, T., Stability conditions and Kleinian singularities, Int. Math. Res. Not. 21 (2009), 41424157.Google Scholar
Bridgeland, T., Qiu, Y. and Sutherland, T., Stability conditions and the $A_2$ quiver, Adv. Math. 365 (2020), 107049.10.1016/j.aim.2020.107049CrossRefGoogle Scholar
Bridgeland, T. and Smith, I., Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci. 121 (2015), 155278.10.1007/s10240-014-0066-5CrossRefGoogle Scholar
Brieskorn, E. and Saito, K., Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245271.10.1007/BF01406235CrossRefGoogle Scholar
Buan, A., Marsh, R. J., Reineke, M., Reiten, I. and Todorov, G., Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572618.10.1016/j.aim.2005.06.003CrossRefGoogle Scholar
Cherednik, I. V., Generalized braid groups and local $r$-matrix systems, Soviet Math. Dokl. 40 (1990), 4348.Google Scholar
Dubrovin, B., On almost duality for Frobenius manifolds, in Geometry, topology and mathematical physics, American Mathematical Society Translations: Series 2, vol. 212; Advances in the Mathematical Sciences, vol. 55 (American Mathematical Society, Providence, RI, 2004), 75132.Google Scholar
Fan, Y.-W., Li, C., Liu, W. and Qiu, Y., Contractibility of space of stability conditions on the projective plane via global dimension function, Math. Res. Lett., to appear. Preprint (2020), arXiv:2001.11984.Google Scholar
Fiorenza, D. and Marchetti, G., The (he)art of gluing, Preprint (2018), arXiv:1806.00883.Google Scholar
Gaiotto, D., Moore, G. and Neitzke, A., Wall-crossing, Hitchin systems and the WKB approximation, Adv. Math. 234 (2013), 239403.10.1016/j.aim.2012.09.027CrossRefGoogle Scholar
Ginzburg, V. G., Calabi–Yau algebras, Preprint (2006), arXiv:math/0612139.Google Scholar
Guo, L., Cluster tilting objects in generalized higher cluster categories, Preprint (2010), arXiv:1005.3564.Google Scholar
Haiden, F., Katzarkov, L. and Kontsevich, M., Stability in Fukaya categories of surfaces, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 247318.10.1007/s10240-017-0095-yCrossRefGoogle Scholar
Hua, Z. and Keller, B., Cluster categories and rational curves, Preprint (2018), arXiv:1810.00749.Google Scholar
Ikeda, A., Stability conditions on $\text {CY}_N$ categories associated to $A_n$-quivers and period maps, Math. Ann. 367 (2017), 149.10.1007/s00208-016-1375-4CrossRefGoogle Scholar
Ikeda, A., Otani, T., Shiraishi, Y. and Takahashi, A., A Frobenius manifold for $l$-Kronecker quiver, Preprint (2020), arXiv:2008.10877.Google Scholar
Ikeda, A. and Qiu, Y., $q$-Stability conditions via $q$-quadratic differntials for Calabi–Yau-$\mathbb {X}$ categories, Mem. Amer. Math. Soc., to appear. Preprint (2018), arXiv:1812.00010.Google Scholar
Ikeda, A., Qiu, Y. and Zhou, Y., Graded decorated marked surfaces: Calabi–Yau-$\mathbb {X}$ categories of gentle algebras, Preprint (2020), arXiv:2006.00009.Google Scholar
Ishii, A., Ueda, K. and Uehara, H., Stability conditions on $A_n$-singularities, J. Differential Geom. 84 (2010), 87126.10.4310/jdg/1271271794CrossRefGoogle Scholar
Iyama, O. and Yang, D., Quotients of triangulated categories and equivalences of Buchweitz, Orlov and Amiot–Guo–Keller, Amer. J. Math. 142 (2020), 1641–1659.10.1353/ajm.2020.0041CrossRefGoogle Scholar
Kalck, M. and Yang, D., Derived categories of graded gentle one-cycle algebras, J. Pure Appl. Algebra 222 (2018), 30053035.10.1016/j.jpaa.2017.11.011CrossRefGoogle Scholar
Keller, B., On triangulated orbit categories, Doc. Math. 10 (2005), 551581.10.4171/dm/199CrossRefGoogle Scholar
Keller, B., Deformed Calabi–Yau completions, J. Reine Angew. Math. 654 (2011), 125180.Google Scholar
Keller, B., On cluster theory and quantum dilogarithm identities, in Representations of algebras and related topics, EMS Series of Congress Reports (EMS Press, 2011), 85116.10.4171/101-1/3CrossRefGoogle Scholar
Keller, B., Erratum to “Deformed Calabi–Yau completions”, Preprint (2018), arXiv:1809.01126.Google Scholar
Keller, B. and Yang, D., Derived equivalences from mutations of quivers with potential, Adv. Math. 226 (2011), 21182168.10.1016/j.aim.2010.09.019CrossRefGoogle Scholar
Khovanov, M. and Seidel, P., Quivers, floer cohomology and braid group actions, J. Amer. Math. Soc. 15 (2002), 203271.10.1090/S0894-0347-01-00374-5CrossRefGoogle Scholar
King, A. and Qiu, Y., Exchange graphs and Ext quivers, Adv. Math. 285 (2015), 11061154.10.1016/j.aim.2015.08.017CrossRefGoogle Scholar
King, A. and Qiu, Y., Cluster exchange groupoids and framed quadratic differentials, Invent. Math. 220 (2020), 479523.10.1007/s00222-019-00932-yCrossRefGoogle Scholar
Kontsevich, M., Homological algebra of mirror symmetry, in Proceedings of the International Congress of Mathematicians (Zürich, 1994) (Birkhäuser, 1995), 120139.10.1007/978-3-0348-9078-6_11CrossRefGoogle Scholar
Kontsevich, M. and Soibelman, Y., Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, Preprint (2008), arXiv:0811.2435.Google Scholar
Lekili, Y. and Polishchuk, A., Auslander orders over nodal stacky curves and partially wrapped Fukaya categories, Preprint (2017), arXiv:1705.06023.Google Scholar
Manin, Y., Frobenius manifolds, quantum cohomology, and moduli spaces, AMS Colloquium Publications, vol. 47 (American Mathematical Society, Providence, RI, 1999).10.1090/coll/047CrossRefGoogle Scholar
Orlov, D., Remarks on generators and dimensions of triangulated categories, Mosc. Math. J. 9 (2009), 153159.Google Scholar
Qiu, Y., Stability conditions and quantum dilogarithm identities for Dynkin quivers, Adv. Math. 269 (2015), 220264.10.1016/j.aim.2014.10.014CrossRefGoogle Scholar
Qiu, Y., Decorated marked surfaces: spherical twists versus braid twists, Math. Ann. 365 (2016), 595633.10.1007/s00208-015-1339-0CrossRefGoogle Scholar
Qiu, Y., Contractible flow of stability conditions via global dimension function, Preprint (2020), arXiv:2008.00282.Google Scholar
Qiu, Y., Global dimension function, Gepner equations and $q$-stability conditions, Math. Z. 303 (2023), paper 11.10.1007/s00209-022-03170-wCrossRefGoogle Scholar
Qiu, Y. and Woolf, J., Contractible stability spaces and faithful braid group actions, Geom. Topol. 22 (2018), 37013760.10.2140/gt.2018.22.3701CrossRefGoogle Scholar
Saito, K., Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19 (1983), 12311264.10.2977/prims/1195182028CrossRefGoogle Scholar
Saito, K., Uniformization of the orbifold of a finite reflection group, Frobenius Manifolds, Aspects Math. 36 (2004), 265320.10.1007/978-3-322-80236-1_11CrossRefGoogle Scholar
Saito, K. and Takahashi, A., From primitive forms to Frobenius manifolds, in From Hodge theory to integrability and TQFT tt*-geometry, Proceedings of Symposia in Pure Mathematics, vol. 78 (American Mathematical Society, Providence, RI, 2008), 3148.10.1090/pspum/078/2483747CrossRefGoogle Scholar
Seidel, P., Picard-Lefschetz theory and dilating $\mathbb {C}^*$-actions, J. Topol. 8 (2015), 11671201.10.1112/jtopol/jtv029CrossRefGoogle Scholar
Seidel, P. and Thomas, R., Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), 37108.10.1215/S0012-7094-01-10812-0CrossRefGoogle Scholar
Smith, I., Quiver algebras and Fukaya categories, Geom. Topol. 19 (2015), 25572617.10.2140/gt.2015.19.2557CrossRefGoogle Scholar
Toda, Y., Gepner type stability conditions on graded matrix factorizations, Algebr. Geom. 1 (2014), 613665.10.14231/AG-2014-026CrossRefGoogle Scholar
Toledano Laredo, V., Flat connections and quantum groups, Acta Appl. Math. 73 (2002), 155173.10.1023/A:1019791123828CrossRefGoogle Scholar