Published online by Cambridge University Press: 03 April 2024
Let  $\mathfrak {F}_n$ be the set of all cuspidal automorphic representations
$\mathfrak {F}_n$ be the set of all cuspidal automorphic representations  $\pi$ of
$\pi$ of  $\mathrm {GL}_n$ with unitary central character over a number field
$\mathrm {GL}_n$ with unitary central character over a number field  $F$. We prove the first unconditional zero density estimate for the set
$F$. We prove the first unconditional zero density estimate for the set  $\mathcal {S}=\{L(s,\pi \times \pi ')\colon \pi \in \mathfrak {F}_n\}$ of Rankin–Selberg
$\mathcal {S}=\{L(s,\pi \times \pi ')\colon \pi \in \mathfrak {F}_n\}$ of Rankin–Selberg  $L$-functions, where
$L$-functions, where  $\pi '\in \mathfrak {F}_{n'}$ is fixed. We use this density estimate to establish: (i) a hybrid-aspect subconvexity bound at
$\pi '\in \mathfrak {F}_{n'}$ is fixed. We use this density estimate to establish: (i) a hybrid-aspect subconvexity bound at  $s=\frac {1}{2}$ for almost all
$s=\frac {1}{2}$ for almost all  $L(s,\pi \times \pi ')\in \mathcal {S}$; (ii) a strong on-average form of effective multiplicity one for almost all
$L(s,\pi \times \pi ')\in \mathcal {S}$; (ii) a strong on-average form of effective multiplicity one for almost all  $\pi \in \mathfrak {F}_n$; and (iii) a positive level of distribution for
$\pi \in \mathfrak {F}_n$; and (iii) a positive level of distribution for  $L(s,\pi \times \widetilde {\pi })$, in the sense of Bombieri–Vinogradov, for each
$L(s,\pi \times \widetilde {\pi })$, in the sense of Bombieri–Vinogradov, for each  $\pi \in \mathfrak {F}_n$.
$\pi \in \mathfrak {F}_n$.
 $L$-functions and the nonexistence of Siegel zeros on
$L$-functions and the nonexistence of Siegel zeros on  ${\rm GL}(3)$, Duke Math. J. 87 (1997), 343–353.CrossRefGoogle Scholar
${\rm GL}(3)$, Duke Math. J. 87 (1997), 343–353.CrossRefGoogle Scholar $L$-functions on
$L$-functions on  $GL(n)$, Geom. Funct. Anal. 22 (2012), 608–620.CrossRefGoogle Scholar
$GL(n)$, Geom. Funct. Anal. 22 (2012), 608–620.CrossRefGoogle Scholar ${\rm GL}(n)$, Invent. Math. 232 (2023), 683–711.CrossRefGoogle Scholar
${\rm GL}(n)$, Invent. Math. 232 (2023), 683–711.CrossRefGoogle Scholar $L$-functions, the Ramanujan conjecture, and families of Hecke characters, Canad. J. Math. 65 (2013), 22–51.CrossRefGoogle Scholar
$L$-functions, the Ramanujan conjecture, and families of Hecke characters, Canad. J. Math. 65 (2013), 22–51.CrossRefGoogle Scholar ${\rm GL}_N$ and narrow zero-free regions for Rankin–Selberg
${\rm GL}_N$ and narrow zero-free regions for Rankin–Selberg  $L$-functions, Amer. J. Math. 128 (2006), 1455–1474.CrossRefGoogle Scholar
$L$-functions, Amer. J. Math. 128 (2006), 1455–1474.CrossRefGoogle Scholar $L$-functions at the edge of the critical strip, J. Eur. Math. Soc. (JEMS) 24 (2022), 1471–1541. With an appendix by Colin J. Bushnell and Guy Henniart.CrossRefGoogle Scholar
$L$-functions at the edge of the critical strip, J. Eur. Math. Soc. (JEMS) 24 (2022), 1471–1541. With an appendix by Colin J. Bushnell and Guy Henniart.CrossRefGoogle Scholar $\sigma =1$, Invent. Math. 11 (1970), 329–339.CrossRefGoogle Scholar
$\sigma =1$, Invent. Math. 11 (1970), 329–339.CrossRefGoogle Scholar ${\rm GL}(2)$ and
${\rm GL}(2)$ and  ${\rm GL}(3)$, Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471–542.CrossRefGoogle Scholar
${\rm GL}(3)$, Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471–542.CrossRefGoogle Scholar $L$-functions via sieve theory, Math. Z. 292 (2019), 1105–1122. With an appendix by Farrell Brumley.CrossRefGoogle Scholar
$L$-functions via sieve theory, Math. Z. 292 (2019), 1105–1122. With an appendix by Farrell Brumley.CrossRefGoogle Scholar ${\rm GL}_n$ variant of the Hoheisel phenomenon, Trans. Amer. Math. Soc. 375 (2022), 1801–1824.CrossRefGoogle Scholar
${\rm GL}_n$ variant of the Hoheisel phenomenon, Trans. Amer. Math. Soc. 375 (2022), 1801–1824.CrossRefGoogle Scholar $L$-functions, Geom. Funct. Anal. (2000), 705–741. GAFA 2000 (Tel Aviv, 1999).Google Scholar
$L$-functions, Geom. Funct. Anal. (2000), 705–741. GAFA 2000 (Tel Aviv, 1999).Google Scholar $\text {GL}(n)$, Math. Ann. 380 (2021), 915–952.CrossRefGoogle Scholar
$\text {GL}(n)$, Math. Ann. 380 (2021), 915–952.CrossRefGoogle Scholar $\mathrm {GL}(n)\times \mathrm {GL}(n)$ Rankin–Selberg
$\mathrm {GL}(n)\times \mathrm {GL}(n)$ Rankin–Selberg  $L$-functions, Forum Math. Sigma 10 (2022), Paper No. e47.CrossRefGoogle Scholar
$L$-functions, Forum Math. Sigma 10 (2022), Paper No. e47.CrossRefGoogle Scholar $G(F)\backslash G(\mathbb {A})$, in Automorphic representations and L-functions, Tata Institute of Fundamental Research Studies in Mathematics, vol. 22 (Tata Institute of Fundamental Research, Mumbai, 2013), 335–377. With an appendix by Farrell Brumley.Google Scholar
$G(F)\backslash G(\mathbb {A})$, in Automorphic representations and L-functions, Tata Institute of Fundamental Research Studies in Mathematics, vol. 22 (Tata Institute of Fundamental Research, Mumbai, 2013), 335–377. With an appendix by Farrell Brumley.Google Scholar $L$-functions at the edge of the critical strip, Int. Math. Res. Not. IMRN 2010 (2010), 727–755.Google Scholar
$L$-functions at the edge of the critical strip, Int. Math. Res. Not. IMRN 2010 (2010), 727–755.Google Scholar ${\rm GL}_2$, Publ. Math. Inst. Hautes Études Sci. 11 (2010), 171–271.CrossRefGoogle Scholar
${\rm GL}_2$, Publ. Math. Inst. Hautes Études Sci. 11 (2010), 171–271.CrossRefGoogle Scholar ${\rm GL}(n)$, Ann. Sci. Éc. Norm. Supér. (4) 22 (1989), 605–674.CrossRefGoogle Scholar
${\rm GL}(n)$, Ann. Sci. Éc. Norm. Supér. (4) 22 (1989), 605–674.CrossRefGoogle Scholar ${\rm GL}_n$, Geom. Funct. Anal. 14 (2004), 58–93. With an appendix by E. M. Lapid.Google Scholar
${\rm GL}_n$, Geom. Funct. Anal. 14 (2004), 58–93. With an appendix by E. M. Lapid.Google Scholar $L$-series, and multiplicity one for
$L$-series, and multiplicity one for  ${\rm SL}(2)$, Ann. of Math. (2) 152 (2000), 45–111.Google Scholar
${\rm SL}(2)$, Ann. of Math. (2) 152 (2000), 45–111.Google Scholar ${\rm GL}_n$ large sieve, Adv. Math. 378 (2021), 24. Paper No. 107529.CrossRefGoogle Scholar
${\rm GL}_n$ large sieve, Adv. Math. 378 (2021), 24. Paper No. 107529.CrossRefGoogle Scholar