Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T15:17:28.525Z Has data issue: false hasContentIssue false

Adolescent cannabis use, change in neurocognitive function, and high-school graduation: A longitudinal study from early adolescence to young adulthood

Published online by Cambridge University Press:  29 December 2016

Natalie Castellanos-Ryan
Affiliation:
Université de Montréal Centre de recherche du CHU Ste.-Justine
Jean-Baptiste Pingault
Affiliation:
University College London King's College London
Sophie Parent
Affiliation:
Université de Montréal
Frank Vitaro
Affiliation:
Université de Montréal Centre de recherche du CHU Ste.-Justine
Richard E. Tremblay
Affiliation:
Centre de recherche du CHU Ste.-Justine Tomsk State University
Jean R. Séguin*
Affiliation:
Université de Montréal Centre de recherche du CHU Ste.-Justine
*
Address correspondence and reprint requests to: Jean R. Séguin, Centre de recherche du CHU Ste.-Justine, Université de Montréal, 3175 Chemin de la Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada; E-mail: jean.seguin@umontreal.ca.

Abstract

The main objective of this prospective longitudinal study was to investigate bidirectional associations between adolescent cannabis use (CU) and neurocognitive performance in a community sample of 294 young men from ages 13 to 20 years. The results showed that in early adolescence, and prior to initiation to CU, poor short-term and working memory, but high verbal IQ, were associated with earlier age of onset of CU. In turn, age of CU onset and CU frequency across adolescence were associated with (a) specific neurocognitive decline in verbal IQ and executive function tasks tapping trial and error learning and reward processing by early adulthood and (b) lower rates of high-school graduation. The association between CU onset and change in neurocognitive function, however, was found to be accounted for by CU frequency. Whereas the link between CU frequency across adolescence and change in verbal IQ was explained (mediated) by high school graduation, the link between CU frequency and tasks tapping trial and error learning were independent from high school graduation, concurrent cannabis and other substance use, adolescent alcohol use, and externalizing behaviors. Findings support prevention efforts aimed at delaying onset and reducing frequency of CU.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was made possible by a fellowship (to N.C.-R.) from the Ministère de l’Éducation, du Loisir et du Sport du Québec (No. 149169) and the Fonds de Recherche en Santé du Québec (No. 22530); and grants from the Canadian Institutes of Health Research (MOP-97910), the Social Science and Humanities Research Council of Canada (412-2000-1003), the National Health Research and Development Program, the Fonds Québécois de Recherche sur la Société et la Culture (2002-RS-79238 and 2009-RG-124779), the Fonds Québécois de Recherche en Santé, the American National Science Foundation (SES-9911370), and the National Consortium on Violence Research (supported under Grant SBR-9513040 from the National Science Foundation). These funding agencies had no role in the study design, collection, analysis, or interpretation of the data; writing the manuscript; or the decision to submit the paper for publication. The authors thank the boys, their families, and teachers for their long-term commitment to this project.

References

Barker, E. D., Tremblay, R. E., van Lier, P. A., Vitaro, F., Nagin, D. S., Assaad, J. M., & Séguin, J. R. (2011). The neurocognition of conduct disorder behaviors: Specificity to physical aggression and theft after controlling for ADHD symptoms. Aggressive Behavior, 37, 6372.CrossRefGoogle ScholarPubMed
Becker, B., Wagner, D., Gouzoulis-Mayfrank, E., Spuentrup, E., & Daumann, J. (2010a). Altered parahippocampal functioning in cannabis users is related to the frequency of use. Psychopharmacology (Berlin), 209, 361374.CrossRefGoogle Scholar
Becker, B., Wagner, D., Gouzoulis-Mayfrank, E., Spuentrup, E., & Daumann, J. (2010b). The impact of early-onset cannabis use on functional brain correlates of working memory. Progress in Neuropsychopharmacology and Biological Psychiatry, 34, 837845.CrossRefGoogle ScholarPubMed
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238246.CrossRefGoogle ScholarPubMed
Boisjoli, R., Vitaro, F., Lacourse, Ã., Barker, E. D., & Tremblay, R. E. (2007). Impact and clinical significance of a preventive intervention for disruptive boys: 15-year follow-up. British Journal of Psychiatry, 191, 415419.CrossRefGoogle ScholarPubMed
Bolla, K. I., Brown, K., Eldreth, D., Tate, K., & Cadet, J. L. (2002). Dose-related neurocognitive effects of marijuana use. Neurology, 59, 13371343.CrossRefGoogle ScholarPubMed
Breslau, J., Michael, L., Nancy, S. B., & Kessler, R. C. (2008). Mental disorders and subsequent educational attainment in a US national sample. Journal of Psychiatric Research, 42, 708716.CrossRefGoogle Scholar
Brinch, C. N., & Galloway, T. A. (2012). Schooling in adolescence raises IQ scores. Proceedings of the National Academy of Sciences, 109, 425430.CrossRefGoogle ScholarPubMed
Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In Bollen, K. A. & Long, J. S. (Eds.), Testing structural equation modeling (pp. 136162). Thousand Oaks, CA: Sage.Google Scholar
Broyd, S. J., van Hell, H. H., Beale, C., Yucel, M., & Solowij, N. (2016). Acute and chronic effects of cannabinoids on human cognition—A systematic review. Biological Psychiatry, 79, 557567.CrossRefGoogle ScholarPubMed
Burns, H. D., Van Laere, K., Sanabria-Bohorquez, S., Hamill, T. G., Bormans, G., Eng, W. S., … Hargreaves, R. J. (2007). [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proceedings of the National Academy of Sciences, 104, 98009805.CrossRefGoogle ScholarPubMed
Carlson, S. M., Zelazo, P. D., & Faja, S. (2013). Executive function. In Zelazo, P. D. (Ed.), The Oxford handbook of developmental psychology: Vol. 1. Body and mind (pp. 706743). New York: Oxford University Press.Google Scholar
Castellanos-Ryan, N., Séguin, J. R., Vitaro, F., Parent, S., & Tremblay, R. E. (2013). A multimodal intervention for disruptive kindergarten children reduces substance-use across adolescence: A randomized control trial. British Journal of Psychiatry, 203, 188195.CrossRefGoogle Scholar
Cheng, H., Skosnik, P. D., Pruce, B. J., Brumbaugh, M. S., Vollmer, J. M., Fridberg, D. J., … Newman, S. D. (2014). Resting state functional magnetic resonance imaging reveals distinct brain activity in heavy cannabis users—A multi-voxel pattern analysis. Journal of Psychopharmacology, 28, 10301040.CrossRefGoogle ScholarPubMed
Chevrier, J. M. (1989). Épreuve Individuelle d'Habileté Mentale [Individual tasks of mental ability]. Montréal: Institut de Recherches Psychologiques.Google Scholar
Churchwell, J. C., Lopez-Larson, M., & Yurgelun-Todd, D. A. (2010). Altered frontal cortical volume and decision making in adolescent cannabis users. Frontiers in Psychology, 1, 225.CrossRefGoogle ScholarPubMed
Clark, D. B., & Winters, K. C. (2002). Measuring risks and outcomes in substance use disorders prevention research. Journal of Consulting and Clinical Psychology, 70, 12071223.CrossRefGoogle ScholarPubMed
Colom, R., Karama, S., Jung, R. E., & Haier, R. J. (2010). Human intelligence and brain networks. Dialogues in Clinical Neuroscience, 12, 489501.CrossRefGoogle ScholarPubMed
Conrod, P. J., Castellanos-Ryan, N., & Strang, J. (2010). Brief, personality-targeted coping skills interventions and survival as a non-drug user over a 2-year period during adolescence. Archives of General Psychiatry, 67, 8593.CrossRefGoogle Scholar
Cousijn, J., Wiers, R. W., Ridderinkhof, K. R., van den Brink, W., Veltman, D. J., & Goudriaan, A. E. (2014). Effect of baseline cannabis use and working-memory network function on changes in cannabis use in heavy cannabis users: A prospective fMRI study. Human Brain Mapping, 35, 24702482.CrossRefGoogle ScholarPubMed
Crean, R. D., Crane, N. A., & Mason, B. J. (2011). An evidence-based review of acute and long-term effects of cannabis use on executive cognitive functions. Journal of Addiction Medicine, 5, 18.CrossRefGoogle ScholarPubMed
Degenhardt, L., & Hall, W. (2012). Extent of illicit drug use and dependence, and their contribution to the global burden of disease Lancet, 379, 5570.CrossRefGoogle ScholarPubMed
Degenhardt, L., Stockings, E., Patton, G., Hall, W. D., & Lynskey, M. (2016). The increasing global health priority of substance use in young people. Lancet Psychiatry, 3, 251264.CrossRefGoogle ScholarPubMed
ElSohly, M. A., Mehmedic, Z., Foster, S., Gon, C., Chandra, S., & Church, J. C. (2016). Changes in cannabis potency over the last 2 decades (1995–2014): Analysis of current data in the United States. Biological Psychiatry, 79, 613619.CrossRefGoogle ScholarPubMed
Fergusson, D. M., Boden, J. M., & Horwood, L. J. (2015). Psychosocial sequelae of cannabis use and implications for policy: Findings from the Christchurch Health and Development Study. Social Psychiatry and Psychiatric Epidemiology, 50, 13171326.CrossRefGoogle ScholarPubMed
Fergusson, D. M., Horwood, L. J., & Beautrais, A. L. (2003). Cannabis and educational achievement. Addiction, 98, 16811692.CrossRefGoogle ScholarPubMed
Filbey, F. M., Asian, S., Calhoun, V. D., Spence, J. S., Damaraju, E., Caprihan, A., & Segall, J. (2014). Long-term effects of marijuana use on the brain. Proceedings of the National Academy of Sciences, 111, 1691316918.CrossRefGoogle ScholarPubMed
Flory, K., Lynam, D., Milich, R., Leukefeld, C., & Clayton, R. (2004). Early adolescent through young adult alcohol and marijuana use trajectories: Early predictors, young adult outcomes, and predictive utility. Development and Psychopathology, 16, 193213.CrossRefGoogle ScholarPubMed
Fridberg, D. J., Queller, S., Ahn, W. Y., Kim, W., Bishara, A. J., Busemeyer, J. R., … Stout, J. C. (2010). Cognitive mechanisms underlying risky decision-making in chronic cannabis users. Journal of Mathematical Psychology, 54, 2838.CrossRefGoogle ScholarPubMed
Fridberg, D. J., Skosnik, P. D., Hetrick, W. P., & O'Donnell, B. F. (2013). Neural correlates of performance monitoring in chronic cannabis users and cannabis-naive controls. Journal of Psychopharmacology, 27, 515525.CrossRefGoogle ScholarPubMed
Fried, P. A., Watkinson, B., & Gray, R. (2005). Neurocognitive consequences of marihuana—A comparison with pre-drug performance. Neurotoxicology and Teratology, 27, 231239.CrossRefGoogle ScholarPubMed
Fuhrmann, D., Knoll, L. J., & Blakemore, S. J. (2015). Adolescence as a sensitive period of brain development. Trends in Cognitive Science, 19, 558566.CrossRefGoogle ScholarPubMed
Grant, J. E., Chamberlain, S. R., Schreiber, L., & Odlaug, B. L. (2012). Neuropsychological deficits associated with cannabis use in young adults. Drug and Alcohol Dependence, 121, 159162.CrossRefGoogle ScholarPubMed
Gruber, S. A., Dahlgren, M. K., Sagar, K. A., Gonenc, A., & Lukas, S. E. (2014). Worth the wait: Effects of age of onset of marijuana use on white matter and impulsivity. Psychopharmacology, 231, 14551465.CrossRefGoogle ScholarPubMed
Gruber, S. A., Sagar, K. A., Dahlgren, M. K., Racine, M., & Lukas, S. E. (2012). Age of onset of marijuana use and executive function. Psychology of Addictive Behaviors, 26, 496506.CrossRefGoogle ScholarPubMed
Hall, W. D., & Degenhardt, L. (2009). Adverse health effects of non-medical cannabis use. Lancet, 374, 13831391.CrossRefGoogle ScholarPubMed
Hall, W. D., Patton, G., Stockings, E., Weier, M., Lynskey, M., Morley, K. I., & Degenhardt, L. (2016). Why young people's substance use matters for global health. Lancet Psychiatry, 3, 265279.CrossRefGoogle ScholarPubMed
Hanson, K. L., Winward, J. L., Schweinsburg, A. D., Medina, K. L., Brown, S. A., & Tapert, S. F. (2010). Longitudinal study of cognition among adolescent marijuana users over three weeks of abstinence. Addictive Behaviors, 35, 970976.CrossRefGoogle ScholarPubMed
Harvey, M. A., Sellman, J. D., Porter, R. J., & Frampton, C. M. (2007). The relationship between non-acute adolescent cannabis use and cognition. Drug and Alcohol Review, 26, 309319.CrossRefGoogle ScholarPubMed
Hawkins, J. D., Graham, J. W., Maguin, E., Abbott, R., Hill, K. G., & Catalano, R. F. (1997). Exploring the effects of age of alcohol use initiation and psychosocial risk factors on subsequent alcohol misuse. Journal of Studies on Alcohol and Drugs, 58, 280290.CrossRefGoogle ScholarPubMed
Hayatbakhsh, M. R., Najman, J. M., Jamrozik, K., Mamun, A. A., & Alati, R. (2006). Do parents’ marital circumstances predict young adults’ DSM-IV cannabis use disorders? A prospective study. Addiction, 101, 17781786.CrossRefGoogle ScholarPubMed
Heron, J., Barker, E. D., Joinson, C., Lewis, G., Hickman, M., Munafo, M., & Macleod, J. (2013). Childhood conduct disorder trajectories, prior risk factors and cannabis use at age 16: Birth cohort study. Addiction, 108, 21292138.CrossRefGoogle ScholarPubMed
Hibell, B., Guttormsson, U., Ahlström, S., Balakireva, O., Bjarnason, T., Kokkevi, A., & Kraus, L. (2012). The 2011 ESPAD Report: Substance use among students in 36 European countries. Stockholm: Swedish Council for Information on Alcohol and Other Drugs.Google Scholar
Hyman, S. E., Malenka, R. C., & Nestler, E. J. (2006). Neural mechanisms of addiction: The role of reward-related learning and memory. Annual Review of Neuroscience, 29, 565598.CrossRefGoogle ScholarPubMed
Jager, G., Block, R. I., Luijten, M., & Ramsey, N. F. (2010). Cannabis use and memory brain function in adolescent boys: A cross-sectional multicenter functional magnetic resonance imaging study. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 561572.Google ScholarPubMed
Johnson, W., Hicks, B. M., McGue, M., & Iacono, W. G. (2009). How intelligence and education contribute to substance use: Hints from the Minnesota Twin Family Study. Intelligence, 37, 613624.CrossRefGoogle ScholarPubMed
Johnston, L. D., O'Malley, P. M., Bachman, J. G., & Schulenberg, J. E. (2013). Monitoring the future: National survey results on drug use 1975–2012: Vol. 1. Secondary school students. Ann Arbor, MI: University of Michigan, Institute for Social Research.Google Scholar
Lee, S., Tsang, A., Breslau, J., Aguilar-Gaxiola, S., Angermeyer, M., Borges, G., … Kessler, R. C. (2009). Mental disorders and termination of education in high-income and low- and middle-income countries: Epidemiological study. British Journal of Psychiatry, 194, 411417.CrossRefGoogle ScholarPubMed
Lisdahl, K. M., & Price, J. S. (2012). Increased marijuana use and gender predict poorer cognitive functioning in adolescents and emerging adults. Journal of the International Neuropsychological Society, 18, 678688.CrossRefGoogle ScholarPubMed
Lopez-Larson, M. P., Bogorodzki, P., Rogowska, J., McGlade, E., King, J. B., Terry, J., & Yurgelun-Todd, D. (2011). Altered prefrontal and insular cortical thickness in adolescent marijuana users. Behavioural Brain Research, 220, 164172.CrossRefGoogle ScholarPubMed
Lovallo, W. R., Farag, N. H., Sorocco, K. H., Acheson, A., Cohoon, A. J., & Vincent, A. S. (2013). Early life adversity contributes to impaired cognition and impulsive behavior: Studies from the Oklahoma Family Health Patterns Project. Alcoholism: Clinical and Experimental Research, 37, 616623.CrossRefGoogle ScholarPubMed
Lubman, D. I., Cheetham, A., & Yucel, M. (2015). Cannabis and adolescent brain development. Pharmacology and Therapeutics, 148, 116.CrossRefGoogle ScholarPubMed
Lynskey, M. T., Coffey, C., Degenhardt, L., Carlin, J. B., & Patton, G. (2003). A longitudinal study of the effects of adolescent cannabis use on high school completion. Addiction, 98, 685692.CrossRefGoogle ScholarPubMed
Lynskey, M. T., & Hall, W. (2000). The effects of adolescent cannabis use on educational attainment: A review. Addiction, 95, 16211630.CrossRefGoogle ScholarPubMed
Lyons, M. J., Bar, J. L., Panizzon, M. S., Toomey, R., Eisen, S., Xian, H., & Tsuang, M. T. (2004). Neuropsychological consequences of regular marijuana use: A twin study. Psychological Medicine, 34, 12391250.CrossRefGoogle ScholarPubMed
Mathias, C. W., Blumenthal, T. D., Dawes, M. A., Liguori, A., Richard, D. M., Bray, B., . . . Dougherty, D. M. (2011). Failure to sustain prepulse inhibition in adolescent marijuana users. Drug and Alcohol Dependence, 116, 110116.CrossRefGoogle ScholarPubMed
McCaffrey, D. F., Pacula, R. L., Han, B., & Ellickson, P. (2010). Marijuana use and high school dropout: The influence of unobservables. Health Economics, 19, 12811299.CrossRefGoogle ScholarPubMed
Medina, K. L., Hanson, K. L., Schweinsburg, A. D., Cohen-Zion, M., Nagel, B. J., & Tapert, S. F. (2007). Neuropsychological functioning in adolescent marijuana users: Subtle deficits detectable after a month of abstinence. Journal of the International Neuropsychological Society, 13, 807820.CrossRefGoogle ScholarPubMed
Meier, M. H., Caspi, A., Ambler, A., Harrington, H., Houts, R., Keefe, R. S. E., … Moffitt, T. E. (2012). Persistent cannabis users show neuropsychological decline from childhood to midlife. Proceedings of the National Academy of Sciences, 109, E2657E2664.CrossRefGoogle ScholarPubMed
Moffitt, T. E., Meier, M. H., Caspi, A., & Poulton, R. (2013). Reply to Rogeberg and Daly: No evidence that socioeconomic status or personality differences confound the association between cannabis use and IQ decline. Proceedings of the National Academy of Sciences, 110, E983.CrossRefGoogle ScholarPubMed
Mokrysz, C., Landy, R., Gage, S. H., Munafo, M. R., Roiser, J. P., & Curran, H. V. (2016). Are IQ and educational outcomes in teenagers related to their cannabis use? A prospective cohort study. Journal of Psychopharmacology, 30, 159168.CrossRefGoogle ScholarPubMed
Muthén, L. K., & Muthén, B. O. (1998–2009). Mplus user's guide. Los Angeles: Author.Google Scholar
Newman, J. P., Patterson, C. M., & Kosson, D. S. (1987). Response perseveration in psychopaths. Journal of Abnormal Psychology, 96, 145148.CrossRefGoogle ScholarPubMed
Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9, 6068.CrossRefGoogle ScholarPubMed
Paus, T. (2007). Maturation of structural and functional connectivity in the human brain. In Jirsa, V. K. & McIntosh, A. R. (Eds.), Understanding complex systems (Vol. 2007, pp. 463475).Google Scholar
Petrides, M. (1990). Nonspatial conditional learning impaired in patients with unilateral frontal but not unilateral temporal lobe excisions. Neuropsychologia, 28, 137149.CrossRefGoogle Scholar
Petrides, M., Alivisatos, B., Evans, A. C., & Meyer, E. (1993). Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proceedings of the National Academy of Sciences, 90, 873877.CrossRefGoogle ScholarPubMed
Realini, N., Rubino, T., & Parolaro, D. (2009). Neurobiological alterations at adult age triggered by adolescent exposure to cannabinoids. Pharmacological Research, 60, 132138.CrossRefGoogle ScholarPubMed
Rhemtulla, M., Brosseau-Liard, P. E., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17, 354373.CrossRefGoogle ScholarPubMed
Rubino, T., & Parolaro, D. (2016). The impact of exposure to cannabinoids in adolescence: Insights from animal models. Biological Psychiatry, 79, 578585.CrossRefGoogle ScholarPubMed
Rubino, T., Prini, P., Piscitelli, F., Zamberletti, E., Trusel, M., Melis, M., … Parolaro, D. (2015). Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex. Neurobiology of Diseases, 73, 6069.CrossRefGoogle ScholarPubMed
Rubino, T., Realini, N., Braida, D., Guidi, S., Capurro, V., Viganò, D., … Parolaro, D. (2009). Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood. Hippocampus, 19, 763772.CrossRefGoogle ScholarPubMed
Schreiner, A. M., & Dunn, M. E. (2012). Residual effects of cannabis use on neurocognitive performance after prolonged abstinence: A meta-analysis. Experimental and Clinical Psychopharmacology, 20, 420429.CrossRefGoogle ScholarPubMed
Schulte, M. H., Cousijn, J., den Uyl, T. E., Goudriaan, A. E., van den Brink, W., Veltman, D. J., … Wiers, R. W. (2014). Recovery of neurocognitive functions following sustained abstinence after substance dependence and implications for treatment. Clinical Psychology Review, 34, 531550.CrossRefGoogle ScholarPubMed
Schweinsburg, A. D., Brown, S. A., & Tapert, S. F. (2008). The influence of marijuana use on neurocognitive functioning in adolescents. Current Drug Abuse Review, 1, 99111.Google ScholarPubMed
Séguin, J. R., Arseneault, L., Boulerice, B., Harden, P. W., & Tremblay, R. E. (2002). Response perseveration in adolescent boys with stable and unstable histories of physical aggression: The role of underlying processes. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 43, 481494.CrossRefGoogle ScholarPubMed
Séguin, J. R., Arseneault, L., & Tremblay, R. E. (2007). The contribution of “cool” and “hot” components of decision-making in adolescence: Implications for developmental psychopathology. Cognitive Development, 22, 530543.CrossRefGoogle Scholar
Séguin, J. R., Boulerice, B., Harden, P. W., Tremblay, R. E., & Pihl, R. O. (1999). Executive functions and physical aggression after controlling for attention deficit hyperactivity disorder, general memory, and IQ. Journal of Child Psychology and Psychiatry, 40, 11971208.CrossRefGoogle ScholarPubMed
Séguin, J. R., Nagin, D., Assaad, J. M., & Tremblay, R. E. (2004). Cognitive-neuropsychological function in chronic physical aggression and hyperactivity. Journal of Abnormal Psychology, 113, 603613.CrossRefGoogle ScholarPubMed
Séguin, J. R., Pihl, R. O., Harden, P. W., Tremblay, R. E., & Boulerice, B. (1995). Cognitive and neuropsychological characteristics of physically aggressive boys. Journal of Abnormal Psychology, 104, 614624.CrossRefGoogle ScholarPubMed
Silins, E., Horwood, L. J., Patton, G. C., Fergusson, D. M., Olsson, C. A., Hutchinson, D. M., . . . Cannabis Cohorts Research Committee. (2014). Young adult sequelae of adolescent cannabis use: An integrative analysis. Lancet Psychiatry, 1, 286293.CrossRefGoogle ScholarPubMed
Squeglia, L. M., Jacobus, J., Nguyen-Louie, T. T., & Tapert, S. F. (2014). Inhibition during early adolescence predicts alcohol and marijuana use by late adolescence. Neuropsychology, 28, 782790.CrossRefGoogle ScholarPubMed
Stiby, A. I., Hickman, M., Munafo, M. R., Heron, J., Yip, V. L., & Macleod, J. (2015). Adolescent cannabis and tobacco use and educational outcomes at age 16: Birth cohort study. Addiction, 110, 658668.CrossRefGoogle ScholarPubMed
Tamm, L., Epstein, J. N., Lisdahl, K. M., Molina, B., Tapert, S., Hinshaw, S. P., … MTA Neuroimaging Group. (2014). Impact of ADHD and cannabis use on executive functioning in young adults. Drug and Alcohol Dependence, 133, 607614.CrossRefGoogle Scholar
Tapert, S. F., Granholm, E., Leedy, N. G., & Brown, S. A. (2002). Substance use and withdrawal: Neuropsychological functioning over 8 years in youth. Journal of the International Neuropsychological Society, 8, 873883.CrossRefGoogle ScholarPubMed
Thissen, D., Steinberg, L., & Kuang, D. (2002). Quick and easy implementation of the Benjamini–Hochberg procedure for controlling the false positive rate in multiple comparisons. Journal of Educational and Behavioral Statistics, 27, 7783.CrossRefGoogle Scholar
Tofighi, D., & MacKinnon, D. P. (2011). RMediation: An R package for mediation analysis confidence intervals. Behavior Research Methods, 43, 692700.CrossRefGoogle Scholar
Tremblay, R. E., Loeber, R., Gagnon, C., Charlebois, P., Larivee, S., & LeBlanc, M. (1991). Disruptive boys with stable and unstable high fighting behavior patterns during junior elementary school. Journal of Abnormal Child Psychology, 19, 285300.CrossRefGoogle ScholarPubMed
Tremblay, R. E., Pihl, R. O., Vitaro, F., & Dobkin, P. L. (1994). Predicting early onset of male antisocial behavior from preschool behavior. Archives of General Psychiatry, 51, 732739.CrossRefGoogle ScholarPubMed
Veroff, J., McClelland, L., & Marquis, K. (1971). Measuring intelligence and achievement motivation in surveys: Final report to the U.S. Department of Health, Education, and Welfare. New York: Office of Economic Opportunity.Google Scholar
Verrico, C. D., Gu, H., Peterson, M. L., Sampson, A. R., & Lewis, D. A. (2014). Repeated D9-tetrahydrocannabinol exposure in adolescent monkeys: Persistent effects selective for spatial working memory. American Journal of Psychiatry, 171, 416425.CrossRefGoogle Scholar
Vitaro, F., Brendgen, M., Pagani, L., Tremblay, R. E., & McDuff, P. (1999). Disruptive behavior, peer association, and conduct disorder: Testing the developmental links through early intervention. Development and Psychopathology, 11, 287304.CrossRefGoogle ScholarPubMed
Volkow, N. D., Swanson, J. M., Evins, A. E., DeLisi, L. E., Meier, M. H., Gonzalez, R., … Baler, R. (2016). Effects of cannabis use on human behavior, including cognition, motivation, and psychosis: A review. JAMA Psychiatry, 73, 292297.CrossRefGoogle ScholarPubMed
von Sydow, K., Lieb, R., Pfister, H., Hofler, M., & Wittchen, H. U. (2002). What predicts incident use of cannabis and progression to abuse and dependence? A 4-year prospective examination of risk factors in a community sample of adolescents and young adults. Drug and Alcohol Dependence, 68, 4964.CrossRefGoogle Scholar
Wechsler, D. (1987). Wechsler Memory Scale—Revised. New York: Psychological Corporation.Google Scholar
White, J., & Batty, G. D. (2012). Intelligence across childhood in relation to illegal drug use in adulthood: 1970 British Cohort Study. Journal of Epidemiology and Community Health, 66, 767774.CrossRefGoogle ScholarPubMed
Windle, M., & Wiesner, M. (2004). Trajectories of marijuana use from adolescence to young adulthood: Predictors and outcomes. Development and Psychopathology, 16, 10071027.CrossRefGoogle ScholarPubMed
Winters, K. C. (1992). Development of an adolescent alcohol and other drug abuse screening scale: Personal Experience Screening Questionnaire. Addictive Behaviors, 17, 479490.CrossRefGoogle ScholarPubMed
Winters, K. C. (2003). Assessment of alcohol and other drug use behaviors among adolescents. In Allen, J. P. & Wilson, V. B. (Eds.), Assessing alcohol problems: A guide for clinicians and researchers (2nd ed.). Bethesda, MD: National Institute on Alcohol Abuse and Alcoholism.Google Scholar
Supplementary material: File

Castellanos-Ryan supplementary material

Castellanos-Ryan supplementary material 1

Download Castellanos-Ryan supplementary material(File)
File 61.6 KB