Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-30T01:26:07.615Z Has data issue: false hasContentIssue false

Contextual adversity, telomere erosion, pubertal development, and health: Two models of accelerated aging, or one?

Published online by Cambridge University Press:  30 September 2016

Jay Belsky*
Affiliation:
University of California, Davis
Idan Shalev
Affiliation:
Pennsylvania State University
*
Address correspondence and reprint requests to: Jay Belsky, Department of Human Ecology, Human Development and Family Studies Program, University of California, Davis, One Shields Avenue, 1331 Hart Hall, Davis, CA 95616; E-mail: jbelsky@ucdavis.edu.

Abstract

Two independent lines of inquiry suggest that growing up under conditions of contextual adversity (e.g., poverty and household chaos) accelerates aging and undermines long-term health. Whereas work addressing the developmental origins of health and disease highlights accelerated-aging effects of contextual adversity on telomere erosion, that informed by an evolutionary analysis of reproductive strategies highlights such effects with regard to pubertal development (in females). That both shorter telomeres early in life and earlier age of menarche are associated with poor health later in life raises the prospect, consistent with evolutionary life-history theory, that these two bodies of theory and research are tapping into the same evolutionary–developmental process whereby longer term health costs are traded off for increased probability of reproducing before dying via a process of accelerated aging. Here we make the case for such a claim, while highlighting biological processes responsible for these effects, as well as unknowns in the epigenetic equation that might instantiate these contextually regulated developmental processes.

Type
Special Section Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asok, A., Bernard, K., Roth, T. L., Rosen, B., & Dozier, M. (2013). Parental responsiveness moderates the association between early-life stress and reduced telomere length. Development and Psychopathology, 25, 577585.CrossRefGoogle ScholarPubMed
Barker, D. J. (2007). The origins of the developmental origins theory. Journal of Internal Medicine, 261, 412417.Google Scholar
Barker, D. J. P., Eriksson, J. G., Forsen, T., & Osmond, C. (2002). Fetal origins of adult disease. Nature, 430, 420421.Google Scholar
Bateson, P. (2008). Preparing offspring for future conditions is adaptive. Trends in Endocrinology and Metabolism, 19, 111.Google Scholar
Bateson, P., Barker, D., Clutton-Brock, T., Deb, D., D'Uldine, B., Foley, R. A., et al. (2004). Developmental plasticity and human health. Nature, 430, 419421.CrossRefGoogle ScholarPubMed
Bayne, S., Jones, M. E. E., Li, H., & Liu, J. P. (2007). Potential roles for estrogen regulation of telomerase activity in aging. Annals of the New York Academy of Sciences, 1114, 4855.Google Scholar
Beach, S. R., Brody, G. H., Lei, M. K., Cul, J., & Philibert, R. A. (2014). Is serotonin transporter genotype associated with epigenetic susceptibility or vulnerability? Examination of the impact of socioeconomic status risk on African American youth. Development and Psychopathology, 26, 289304.CrossRefGoogle ScholarPubMed
Beach, S. R., Brody, G. H., Todorov, A. A., Gunter, T. D., & Philibert, R. A. (2010). Methylation at SLC6A4 is linked to family history of child abuse: An examination of the Iowa Adoptee sample. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153, 710713.Google Scholar
Behl, C., Lezoualc'h, F., Trapp, T., Widmann, M., Skutella, T., & Holsboer, F. (1997). Glucocorticoids enhance oxidative stress-induced cell death in hippocampal neurons in vitro. Endocrinology, 138, 101106.Google Scholar
Belsky, J. (2007). Childhood experiences and reproductive strategies. In Dunbar, R. & Barrett, L. (Eds.), Oxford handbook of evolutionary psychology (pp. 237254) Oxford: Oxford University Press.Google Scholar
Belsky, J. (2012). The development of human reproductive strategies: Progress and prospects. Current Directions in Psychological Science, 21, 310316.CrossRefGoogle Scholar
Belsky, J. (2014). Towards an evo-devo theory of reproductive strategy, health and longevity. Perspectives in Psychological Science, 9, 1518.CrossRefGoogle Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influence. Current Directions in Psychological Science, 16, 300304.Google Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.CrossRefGoogle ScholarPubMed
Belsky, J., & Pluess, M. (2013). Beyond risk, resilience and dysregulation: Phenotypic plasticity and human development. Development and Psychopathology, 25, 12431261.CrossRefGoogle ScholarPubMed
Belsky, J., Ruttle, P. L., Boyce, W. T., Armstrong, J. M., & Essex, M. J. (2015). Early adversity, elevated stress physiology, accelerated sexual maturation and poor health in female. Developmental Psychology, 51, 816822.Google Scholar
Belsky, J., Steinberg, L., & Draper, P. (1991). Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Development, 62, 647670.CrossRefGoogle ScholarPubMed
Belsky, J., Steinberg, L., Houts, R., Friedman, S. L., DeHart, G., Cauffman, E., et al. (2007). Family rearing antecedents of pubertal timing. Child Development, 78, 13021321.Google Scholar
Belsky, J., Steinberg, L., Houts, R. M., Halpern-Felsher, B. L., & NICHD Early Child Care Research Network. (2010). The development of reproductive strategy in females: Early maternal harshness → earlier menarche → increased sexual risk taking. Developmental Psychology, 46, 120128.Google Scholar
Belsky, J., & van IJzendoorn, M. H. (2015). What works for whom: Genetic moderation of intervention efficacy. Development and Psychopathology, 27, 16.Google Scholar
Bernstein, L. (2002). Epidemiology of endocrine-related risk factors for breast cancer. Journal of Mammary Gland Biology and Neoplasia, 7, 315.Google Scholar
Bojesen, S. E., Pooley, K. A., Johnatty, S. E., Beesley, J., Michailidou, K., Tyrer, J. P., et al. (2013). Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 45, 371384.CrossRefGoogle ScholarPubMed
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.Google Scholar
Boyce, W. T., & Kobor, M. S. (2015). Development and the epigenome: The “synapse” of gene–environment interplay. Developmetnal Science, 18, 123.Google Scholar
Brody, G. H., Yu, T., Beach, S. R., & Philibert, R. A. (2014). Prevention effects ameliorate the prospective association between nonsupportive parenting and diminished telomere length. Prevention Science. Advance online publication.Google Scholar
Brody, G. H., Yu, T., Chen, Y., Kogan, S. M., Evans, G. W., Windle, M., et al. (2013). Supportive family environments, genes that confer sensitivity, and allostatic load among rural African American emerging adults. Journal of Family Psychology, 27, 2229.Google Scholar
Burgess, L. H., & Handa, R. J. (1992). Chronic estrogen-induced alterations in adrenocorticotropin and corticosterone secretion, and glucocorticoid receptor-mediated functions in female rats. Endocrinology, 131, 12611269.Google Scholar
Byun, H. M., Benachour, N., Zalko, D., Frisardi, M. C., Colicino, E., Takser, L., et al. (2015). Epigenetic effects of low perinatal doses of flame retardant BDE-47 on mitochondrial and nuclear genes in rat offspring. Toxicology, 328, 152159.Google Scholar
Cai, N., Chang, S., Li, Y., Li, Q., Hu, J., Liang, J., et al. (2015). Molecular signatures of major depression. Current Biology, 25, 11461156.Google Scholar
Carey, M. P., Deterd, C. H., de Koning, J., Helmerhorst, F., & de Kloet, E. R. (1995). The influence of ovarian steroids on hypothalamic–pituitary–adrenal regulation in the female rat. Journal of Endocrinology, 144, 311321.Google Scholar
Carroll, J. E., Gruenewald, T. L., Taylor, S. E., Janicki-Deverts, D., Matthews, K. A., & Seeman, T. E. (2013). Childhood abuse, parental warmth and adult multisystem biological risk in the Coronary Artery Risk Development in Young Adults study. Proceedings of the National Academy of Sciences, 110, 1714917153.CrossRefGoogle ScholarPubMed
Champagne, F. A., & Meaney, M. J. (2006). Stress during gestation alters postpartum maternal care and the development of the offspring in a rodent model. Biological Psychiatry, 59, 12271235.CrossRefGoogle Scholar
Chen, C., Liu, Y., Liu, R., Ikenoue, T., Guan, K. L., Liu, Y., et al. (2008). TSC–mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. Journal of Experimental Medicine, 205, 23972408.Google Scholar
Chen, E., Cohen, S., & Miller, G. E. (2010). How low socioeconomic status affects 2-year hormonal trajectories in children. Psychological Science, 21, 3137.Google Scholar
Chen, L., Pan, H., Tuan, T. A., Teh, A. L., MacIsaac, J. L., Mah, S. M., … The Gusto Study Group (2015). Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism influences the association of the methylome with maternal anxiety and neonatal brain volumes. Development and Psychopathology, 27, 137150.Google Scholar
Choi, J., Fauce, S. R., & Effros, R. B. (2008). Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behavior and Immunology, 22, 600605.CrossRefGoogle Scholar
Cicchetti, D., Toth, S. L., & Handley, E. D. (2015). Genetic moderation of interpersonal psychotherapy efficacy for low-income mothers with major depressive disorder: Implications for differential susceptibility. Development and Psychopathology, 27, 1935.Google Scholar
Cohen, S., Janicki-Deverts, D., Turner, R. B., Marsland, A. L., Casselbrant, M. L., Li-Korotky, H., et al. (2013). Childhood socioeconomic status, telomere length, and susceptibility to uper respiratory infection. Brain, Behavior and Immunity, 34, 3138.CrossRefGoogle Scholar
Conradt, E., Hawes, K., Guerin, D., Armstrong, D. A., Tronick, E., Marsit, C. J., et al. (2016). The contributions of maternal sensitivity and maternal depressive symptoms to epigenetic processes and neuroendocrine functioning. Child Development, 87, 7385.Google Scholar
Coppé, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: The dark side of tumor suppression. Annual Review of Pathology, 5, 99.Google Scholar
Costantini, D., Marasco, V., & Møller, A. P. (2011). A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. Journal of Comparative Physiology, 181B, 447456.Google Scholar
Costello, E. J., Sung, M., Worthman, C., & Angold, A. (2007). Pubertal maturation and the development of alcohol use and abuse. Drug and Alcohol Dependence, 88S, S50S59.Google Scholar
Danese, A., Pariante, C. M., Caspi, A., Taylor, A., & Poulton, R. (2007). Childhood maltreatment predicts adult inflammation in a life-course study. Proceedings of the National Academy of Sciences, 104, 13191324.Google Scholar
Dantzer, B., & Fletcher, Q. E. (2015). Telomeres shorten more slowly in slow-aging wild animals than in fast-aging ones. Experimental Gerontology, 71, 3847.Google Scholar
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The adaptive calibration model of stress responsivity. Neuroscience & Biobehavioral Reviews, 35, 15621592.Google Scholar
Dempster, E. L., Wong, C. C., Lester, K. J., Burrage, J., Gregory, A. M., Mill, J., et al. (2014). Genome-wide methylomic analysis of monozygotic twins discordant for adolescent depression. Biological Psychiatry, 76, 977983.Google Scholar
De Vivo, I., Prescott, J., Wong, J. Y., Kraft, P., Hankinson, S. E., & Hunter, D. J. (2009). A prospective study of relative telomere length and postmenopausal breast cancer risk. Cancer Epidemiology Biomarkers & Prevention, 18, 11521156.Google Scholar
Dismukes, A. R., Johnson, M. M., Vitacco, M. J., Iturri, F., & Shirtcliff, E. A. (2015). Coupling of the HPA and HPG axes in the context of early life adversity in incarcerated male adolescents. Developmental Psychobiology, 57, 705718.CrossRefGoogle ScholarPubMed
Drury, S. S., Mabile, E., Brett, Z. H., Esteves, K., Jones, E., Shirtcliff, E. A., et al. (2014). The association of telomere length with family violence and disruption. Pediatrics, 134, e128e137.CrossRefGoogle ScholarPubMed
Drury, S. S., Theall, K., Gleason, M. M., Smyke, A. T., De Vivo, I., Wong, J. Y., et al. (2011) Telomere length and early severe social deprivation—Linking early adversity and cellular aging. Molecular Psychiatry, 17, 719727.Google Scholar
Edelman, S., Shalev, I., Uzefovsky, F, Israel, S., Knafo, A., Kremer, I., et al. (2012). Epigenetic modification of the glucocorticoid receptor predicts gender-sensitive differences in salivary cortisol following a threat to the social self. PLOS ONE, 7, e48597.CrossRefGoogle Scholar
Elks, C. E., Perry, J. R., Sulem, P., Chasman, D. I., Franceschini, N., He, C., et al. (2010). Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nature Genetics, 42, 10771085.Google Scholar
Ellis, B. J. (2004). Timing of pubertal maturation in girls: An integrated life history approach. Psychological Bulletin, 130, 920958.Google Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728.Google Scholar
Ellis, B. J., & Del Giudice, M. (2014). Beyond allostatic load: Rethinking the role of stress in regulating human development. Development and Psychopathology, 26, 120.CrossRefGoogle ScholarPubMed
Ellis, B. J., Del Giudice, M., & Shirtcliff, E. A. (2013). Beyond allostatic load: The stress response system as a mechanism of conditional adaptation. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (2nd ed., pp. 251284). Hoboken, NJ: Wiley.Google Scholar
Ellis, B. J., & Essex, M. J. (2007). Family environments, adrenarche, and sexual maturation: A longitudinal test of a life history model. Child Development, 78, 17991817.CrossRefGoogle ScholarPubMed
Ellis, B. J., Shirtcliff, E. A., Boyce, W., Deardorff, J., & Essex, M. J. (2011). Quality of early family relationships and the timing and tempo of puberty. Development and Psychopathology, 23, 8599.Google Scholar
Entringer, S., Buss, C., & Wadhwa, P. D. (2012). Prenatal stress, telomere biology, and fetal programming of health and disease risk. Science Signaling, 5(248), 2003580.Google Scholar
Entringer, S., Epel, E. S., Lin, J., Buss, C., Shahbaba, B., Blackburn, E. H., et al. (2013). Maternal psychosocial stress during pregnancy is associated with newborn leukocyte telomere length. American Journal of Obstetrics and Gynecology, 208, 134.Google Scholar
Epel, E. S., Lin, J., Wilhelm, F. H., Wolkowitz, O. M., Cawthon, R., Adler, N. E., et al. (2006). Cell aging in relation to stress arousal and cardiovascular disease risk factors. Psychoneuroendocrinology, 31, 277287.CrossRefGoogle ScholarPubMed
Epel, S., Blackburn, E. H., Lin, J., Dhabhar, F. S., Adler, N. E., Morrow, J. D., et al. (2004). Accelerated telomere shortening in response to life stress. Proceedings of the National Academy of Sciences, 101, 1731217315.Google Scholar
Essex, M., Boyce, W. T., Hertzman, C., Lam, L. L., Armstrong, J. M., Neumann, S. M. A., et al. (2011) Epigenetic vestiges of early developmental adversity: Childhood stress exposure and DNA methylation in adolescence. Child Development, 84, 5875.Google Scholar
Evans, G. W. (2003). A multimethodological analysis of cumulative risk and allostatic load among rural children. Developmental Psychology, 39, 924933. doi:10.1037/0012-1649.39.5.924 Google Scholar
Evans, G. W., & Kim, P. (2012). Childhood poverty and young adult allostatic load: The mediating role of childhood cumulative risk exposure. Psychological Science, 23, 979983. doi:10.1177/0956797612441218 Google Scholar
Fagundes, C. P., & Way, B (2014). Early-life stress and adult inflammation. Psychological Science, 23, 277283.Google Scholar
Figueiredo, H. F., Ulrich-Lai, Y. M., Choi, D. C., & Herman, J. P. (2007). Estrogen potentiates adrenocortical responses to stress in female rats. American Journal of Physiology, Endocrinology, and Metabolism, 292, E1173E1182.Google Scholar
Flaherty, E. G., Thompson, R., Dubowtiz, H., Harvey, E. M., English, D. J., Proctor, L. J., et al. (2013). Adverse childhood experience and child health in early adolescence. JAMA Pediatrics, 167, 622629.CrossRefGoogle ScholarPubMed
Gao, J., & Munch, S. B. (2015). Does reproductive investment decrease telomere length in Menidia menidia? PLOS ONE, 10, e0125674.Google Scholar
Gee, D. G., Gabard-Durnam, L. J., Flannery, J., Goff, B., Humphreys, K. L., Telzer, E. H., et al. (2013). Early developmental emergence of human–amygdala–prefrontal connectivity after maternal deprivation. Proceedings of the National Academy of Sciences, 110, 1563815643.Google Scholar
Gluckman, P. D., Hanson, M. A., Cooper, C., & Thornburg, K. L. (2008). Effect of in utero and early-life conditions on adult health and disease. New England Journal of Medicine, 359, 6173.Google Scholar
Gluckman, P. D., Hanson, M. A., & Spencer, H. G. (2005). Predictive adaptive responses and human evolution. Trends in Ecology and Evolution, 20, 527533.CrossRefGoogle ScholarPubMed
Goronzy, J. J., Fujii, H., & Weyand, C. M. (2006). Telomeres, immune aging and autoimmunity. Experimental Gerontology, 41, 246251.CrossRefGoogle ScholarPubMed
Gotlib, I. H., LeMoult, J., Colich, N. L., Foland-Ross, L. C., Hallmayer, J., Joormann, J., et al. (2014). Telomere length and cortisol reactivity in children of depressed mothers. Molecular Psychiatry. Advance online publication.Google Scholar
Graham, A. M., Pfeifer, J. H., Fisher, P. A., Carpenter, S., & Fair, D. A. (2015). Early life stress is associated with default system integrity and emotionality during infancy. Journal of Child Psychology and Psychiatry, 56, 12121222.Google Scholar
Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: Normative changes and associations with puberty. Development and Psychopathology, 21, 6985.Google Scholar
Handa, R. J., & Weiser, M. J. (2014). Gonadal steroid hormones and the hypothalamo–pituitary–adrenal axis. Frontiers in Neuroendocrinology, 35, 197220.Google Scholar
Harrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., et al. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460, 392395.Google Scholar
Hartman, S., Widaman, K. F., & Belsky, J. (2014). Genetic moderation of effects of maternal sensitivity on girl's age of menarche: Replication of Manuck et al. Development and Psychopathology, 23, 110.Google Scholar
Haussmann, M. F., Winkler, D. W., O'Reilly, K. M., Huntington, C. E., Nisbet, I. C., & Vleck, C. M. (2003). Telomeres shorten more slowly in long-lived birds and mammals than in short–lived ones. Proceedings of the Royal Society of London B: Biological Sciences, 270, 13871392.Google Scholar
Heijmans, B. T., & Mill, J. (2012). Commentary: The seven plagues of epigenetic epidemiology. International Journal of Epidemiology, 41, 7478.Google Scholar
Hertzman, C. (1999). The biological embedding of early experience and its effects on health in adulthood. Annals of the New York Academy of Science, 896, 8595.CrossRefGoogle ScholarPubMed
Hertzman, C., & Power, C. (2004). Child development as a determinant of health across the life course. Current Paediatrics, 14, 438443.Google Scholar
Ibáñez, L., Ferrer, A., Marcos, M. V., Hierro, F. R., & de Zegher, F. (2000). Early puberty: Rapid progression and reduced final height in girls with low birth weight. Pediatrics, 106, e72.Google Scholar
Ibáñez, L., Jiménez, R., & de Zegher, F. (2006). Early puberty-menarche after precocious pubarche: Relation to prenatal growth. Pediatrics, 117, 117121.Google Scholar
Ibáñez, L., Valls, C., Potau, N., Marcos, M. V., & De Zegher, F. (2001). Polycystic ovary syndrome after precocious pubarche: Ontogeny of the low-birthweight effect. Clinical Endocrinology, 55, 667672.Google Scholar
Ivy, A. S., Brunson, K. L., Sandman, C., & Baram, T. Z. (2008). Dysfunctional nurturing behavior in rat dams with limited access to nesting material: A clinically relevant model for early-life stress. Neuroscience, 154, 11321142.Google Scholar
Jirtle, R. L., & Skinner, M. K. (2007). Environmental epigenomics and disease susceptibility. Nature Reviews Genetic, 8, 253262.Google Scholar
Jurk, D., Wilson, C., Passos, J. F., Oakley, F., Correia-Melo, C., Greaves, L., et al. (2014). Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature Communications. Advance online publication.Google Scholar
Kaplan, H. S., & Gangestad, S. W. (2005). Life history theory and evolutionary psychology. In Buss, D. (Ed.), Handbook of evolutionary psychology (pp. 6895). New York: Wiley Google Scholar
Kelskey, J. L., Gammon, M. D., & John, E. M. (1993). Reproductive factors and breast cancer. Epidemiological Reviews, 15, 3647.Google Scholar
Kember, R. L., Dempster, E. L., Lee, T. H., Schalkwyk, L. C., Mill, J., & Fernandes, C. (2012). Maternal separation is associated with strain-specific response to stress and epigenetic alterations to Nr3cl, Avp, and Nr4a1 in mouse. Brain and Behavior, 2, 455467.Google Scholar
Kertes, D. A., Kamin, H. S., Hughes, D. A., Rodney, N. C., Bhatt, S., & Mulligan, C. J. (2016). Prenatal maternal stress predicts methylation of genes regulating the hypothalamic–pituitary–adrenocortical system in mothers and newborns in the Democratic Republic of Congo. Child Development, 87, 6172.Google Scholar
Kiecolt-Glaser, J. K., Gouin, J. P., Weng, N. P., Malarkey, W. B., Beversdorf, D. G., & Glaser, R. (2011). Childhood adversity heightens the impact of later-life caregiving stress on telomere length and inflammation. Psychosomatic Medicien, 73, 1622.Google Scholar
Kiecolt-Glaser, J. K., Jaremka, L. M., Derry, H. M., & Glaser, R. (2013). Telomere length: A marker of disease susceptibility? Brain, Behavior and Immunity, 34, 2930.Google Scholar
Kim, J. H., Kim, H. K., Ko, J. H., Bang, H., & Lee, D. C. (2013). The relationship between leukocyte mitochondrial DNA copy number and telomere length in community-dwelling elderly women. PLOS ONE, 8, e67227.Google Scholar
Kirkwood, T. B. L. (2002). Evolution and aging. Mechanisms of Aging and Development, 123, 737745.Google Scholar
Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J. C., Pariante, C. M., et al. (2013). Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions. Nature Neuroscience, 16, 3341.Google Scholar
Kroenke, C. H., Epel, E., Adler, N., Bush, N. R., Obradovic, J., Lin, J., et al. (2011). Autonomic and adrenocortical reactivity and buccal cell telomere length in kindergarten children. Psychosomatic Medicine, 73, 533540.Google Scholar
Lehman, B. J., Taylor, S. E., Kiefe, C. I., & Seeman, T. E. (2005). Relation of childhood socioeconomic status and family environment to adult metabolic functioning in the CARDIA study. Psychosomatic Medicine, 67, 846854.Google Scholar
Lemaître, J. F., Berger, V., Bonenfant, C., Douhard, M., Gamelon, M., Plard, F., et al. (2015). Early-late life trade-offs and the evolution of ageing in the wild. Proceedings of the Royal Society of London B: Biological Sciences, 282, 20150209.Google Scholar
Levitt, N. S., Lindsay, R. S., Holmes, M. C., & Seckl, J. R. (1996). Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology, 64, 412418.Google Scholar
Lomniczi, A., Loche, A., Castellano, J. M., Ronnekleiv, O. K., Bosch, M., Kaidar, G., et al. (2013). Epigenetic control of female puberty. Nature Neuroscience, 16, 281289.CrossRefGoogle ScholarPubMed
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153, 11941217.Google Scholar
Lowe, R., Gemma, C., Beyan, H., Hawa, M. I., Bazeos, A., Leslie, R. D., et al. (2013). Buccals are likely to be a more informative surrogate tissue than blood for epigenome-wide association studies. Epigenetics, 8, 445454.Google Scholar
Madrigano, J., Baccarelli, A. A., Mittleman, M. A., Sparrow, D., Vokonas, P. S., Tarantini, L., et al. (2012). Aging and epigenetics: Longitudinal changes in gene-specific DNA methylation. Epigenetics, 7, 6370.Google Scholar
Manoli, I., Alesci, S., Blackman, M. R., Su, Y. A., Rennert, O. M., & Chrousos, G. P. (2007). Mitochondria as key components of the stress response. Trends in Endocrinology & Metabolism, 18, 190198.CrossRefGoogle ScholarPubMed
Manuck, S. B., Craig, A. E., Flory, J. D., Halder, I., & Ferrell, R. E. (2011). Reported early family environment covaries with menarcheal age as a function of polymorphic variation in estrogen receptor-α gene. Development and Psychopathology, 23, 6983.Google Scholar
Marceau, K., Shirtcliff, E. A., Hastings, P. D., Klimes-Dougan, B., Zahn-Waxler, C., Dorn, L. D., et al. (2014). Within-adolescent coupled changes in cortisol with DHEA and testosterone in response to three stressors during adolescence. Psychoneuroendocrinology, 41, 3345.CrossRefGoogle ScholarPubMed
Marchetto, N. M., Glynn, R. A., Ferry, M. L., Ostojic, M., Wolff, S. M., Yao, R., et al. (2016). Prenatal stress and newborn telomere length. American Journal of Obstetrics and Gynecology. Advance online publication.Google Scholar
McGowan, P. O., Sasaki, A., D'Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348.Google Scholar
McGowan, P. O., Suderman, M., Sasaki, A., Huang, T. C., Hallett, M., Menaey, M. J., et al. (2011). Broad epigenetic signature of maternal care in the brain of adult rats. PLOS ONE, 6, e14739. doi:10.371371/journal.pone.0014739 Google Scholar
McIntosh, L. J., Hong, K. E., & Sapolsky, R. M. (1998). Glucocorticoids may alter antioxidant enzyme capacity in the brain: Baseline studies. Brain Research, 791, 209214.CrossRefGoogle ScholarPubMed
McPherson, C. P., Sellers, T. A., Potter, J. D., Bostick, R. M., & Folsom, A. R. (1996). Reproductive factors and risk of endometrial cancer. American Journal of Epidemiology, 143, 11951202.CrossRefGoogle ScholarPubMed
Meaney, M. J., Szyf, M., & Seckl, J. R. (2007). Epigenetic mechanisms of perinatal programming of hypothalamic–pituitary–adrenal function and health. Trends in Molecular Medicine, 13, 269277.Google Scholar
Melas, P. A., Wei, Y., Wong, C. C., Sjöholm, L. K., Åberg, E., Mill, J., et al. (2013). Genetic and epigenetic associations of MAOA and NR3C1 with depression and childhood adversities. International Journal of Neuropsychopharmacology, 16, 15131528.Google Scholar
Melchior, M., Moffitt, T. E., Milne, B. J., Poulton, R., & Caspi, A. (2007). Why do children from socioeconomically disadvantaged families suffer from poor health when they reach adulthood? American Journal of Epidemiology, 166, 966974.Google Scholar
Mendle, J., & Ryan, R. (in press). Early childhood maltreatment and pubertal development: Replication in a population-based sample. Journal of Research on Adolescence.Google Scholar
Meyne, J., Ratliff, R. L., & Moyzis, R. K. (1989). Conservation of the human telomere sequence (TTAGGG) among vertebrates. Proceedings of the National Academy of Sciences, 86, 70497053.Google Scholar
Miller, G. E., Chen, E., Fok, A. K., Walker, H., Lim, A., Nicholls, E. F., et al. (2009). Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proceedings of the National Academy of Sciences, 106, 1471614721.Google Scholar
Miller, G. E., Chen, E., & Parker, K. J. (2011). Psychological stress in childhood and susceptibility to the chronic diseases of aging. Psychological Bulletin, 137, 959997.Google Scholar
Misiti, S., Nanni, S., Fontemaggi, G., Cong, Y. S., Wen, J. P., Hirte, H. W., et al. (2000). Induction of hTERT expression and telomerase activity by estrogens in human ovary epithelium cells. Molecular and Cellular Biology, 20, 37643771.Google Scholar
Mitchell, C., Hobcraft, J., McLanahan, S. S., Siegel, S. R., Berg, A., Brooks-Gunn, J., et al. (2014). Social disadvantage, genetic sensitivity, and children's telomere length. Proceedings of the National Academy of Sciences, 22, 59445949.Google Scholar
Murgatroyd, C., Patchev, A. V., Wu, Y., Micale, V., Bockmühl, Y., Fischer, D., et al. (2009). Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nature Neuroscience, 12, 15591566.Google Scholar
Naka, K., Muraguchi, T., Hoshii, T., & Hirao, A. (2008). Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxidants and Redox Signaling, 10, 18831894.Google Scholar
Negriff, S., Blankson, A. N., & Trickett, P. K. (2014). Pubertal timing and tempo: Associations with childhood maltreatment. Journal of Research on Adolescence. Advance online publication.Google Scholar
Nettle, D., Frankenhuis, W. E., & Rickard, I. J. (2013). The evolution of predictive adaptive responses in human life history. Proceedings of the Royal Society B: Biological Sciences, 280, 20132822.Google Scholar
Norman, R. L., Smith, C. J., Pappas, J. D., & Hall, J. (1992). Exposure to ovarian steroids elicits a female pattern of plasma cortisol levels in castrated male macaques. Steroids, 57, 3743.Google Scholar
Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., Devlin, A. M., et al. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3, 97106.Google Scholar
O'Connor, T. G., Winter, M. A., Hunn, J., Carnahan, J., Pressman, E. K., Glover, V., et al. (2013). Prenatal maternal anxiety predicts reduced adaptive immunity in infants. Brain, Behavior and Immunity, 32, 2128.Google Scholar
Pace, T. W., Mletzko, T. C., Alagbe, O., Musselman, D. L., Nemeroff, C. B., Miller, A. H., et al. (2006). Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. American Journal of Psychiatry, 163, 16301633.Google Scholar
Parade, S. H., Ridout, K. K., Seifer, R., Armstrong, D. A., Marsit, C. J., McWilliams, M. A., et al. (2016). Methylation of the glucocorticoid receptor gene promotor in preschoolers: Links with internalizing behavior problems. Child Development, 87, 8697.Google Scholar
Passos, J. F., Nelson, G., Wang, C., Richter, T., Simillion, C., Proctor, C. J., et al. (2010). Feedback between p21 and reactive oxygen production is necessary for cell senescence. Molecular Systems Biology, 6, 347.Google Scholar
Peiffer, A., Lapointe, B., & Barden, N. (1991). Hormonal regulation of type II glucocorticoid receptor messenger ribonucleic acid in rat brain. Endocrinology, 129, 21662174.Google Scholar
Perroud, N., Paoloni-Giacobino, A., Prada, P., Olie, E., Salzmann, A., Nicastro, R., et al. (2011). Increased methylation of glucocorticoid receptor gene (NR3C1) in adults with a history of childhood maltreatment: A link with the severity and type of trauma. Translational Psychiatry, 1, e59.Google Scholar
Pesonen, A., Raikkonen, K., Heinonen, K., Kajantie, E., Forsen, T., & Eriksson, J. G. (2008). Reproductive traits following a parent–child separation trauma during childhood: A natural experiment during World War II. American Journal of Human Biology, 20, 345351.Google Scholar
Picard, M., Juster, R. P., & McEwen, B. S. (2014). Mitochondrial allostatic load puts the “gluc” back in glucocorticoids. Nature Reviews Endocrinology, 10, 303310.Google Scholar
Pieters, N., Janssen, B. G., Valeri, L., Cox, B., Cuypers, A., Dewitte, H., et al. (2015). Molecular responses in the telomere-mitochondrial axis of ageing in the elderly: A candidate gene approach. Mechanisms of Ageing and Development, 145, 5157.Google Scholar
Poulton, R., Caspi, A., Milne, B. J., Thomson, W. M., Taylor, A., Sears, M. R., et al. (2002). Associations between children's experience of socioeconomic disadvantage and adult health. Lancet, 360, 16401645.Google Scholar
Price, L. H., Kao, H., Burgers, D. E., Carpenter, L. L., & Tyrka, A. R. (2012). Telomeres and early-life stress: An overview. Biological Psychiatry, 73, 1523.Google Scholar
Redei, E., Li, L., Halasz, I., McGivern, R. F., & Aird, F. (1994). Fast glucocorticoid feedback inhibition of ACTH secretion in the ovariectomized rat: Effect of chronic estrogen and progesterone. Neuroendocrinology, 60, 113123.Google Scholar
Révész, D., Milaneschi, Y., Verhoeven, J. E., & Penninx, B. W. (2014). Telomere length as a marker of cellular aging is associated with prevalence and progression of metabolic syndrome. Journal of Clinical Endocrinology & Metabolism, 99, 46074615.Google Scholar
Richardson, B. (2003). Impact of aging on DNA methylation. Ageing Research Reviews, 2, 245261.Google Scholar
Rickard, I. J., Frankenhuis, W. E., & Nettle, D. (2014). Why are childhood family factors associated with timing of maturation: The role for internal prediction. Perspectives in Psychological Science, 9, 315.Google Scholar
Ricklefs, R. E. (2010). Life-history connections to rates of aging in terrestrial vertebrates. Proceedings of the National Academy of Sciences, 107, 1031410319.Google Scholar
Roa, J., Garcia-Galiano, D., Varela, L., Sanchez-Garrido, M. A., Pineda, R., Castellano, J. M., et al. (2009). The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology, 150, 50165026.Google Scholar
Roberts, S., Lester, K. J., Hudson, J. L., Rapee, R. M., Creswell, C., Cooper, P. J., et al. (2014). Serotonin tranporter methylation and response to cognitive behaviour therapy in children with anxiety disorders. Translational Psychiatry, 4, e444.Google Scholar
Rodier, F., Coppé, J. P., Patil, C. K., Hoeijmakers, W. A., Muñoz, D. P., Raza, S. R., et al. (2009). Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nature Cell Biology, 11, 973979.Google Scholar
Romens, S. E., McDonald, J., Svaren, J., & Pollak, S. D. (2014). Associations between early life stress and gene methylation in children. Child Development, 86, 303309.CrossRefGoogle ScholarPubMed
Romeo, R. D. (2010). Pubertal maturation and programming of hypothalamic–pituitary–adrenal reactivity. Frontiers in Neuroendocrinology, 31, 232240.Google Scholar
Romeo, R. D., Bellani, R., Karatsoreos, I. N., Chhua, N., Vernov, M., Conrad, C. D., et al. (2006). Stress history and pubertal development interact to shape hypothalamic–pituitary–adrenal axis plasticity. Endocrinology, 147, 16641674.Google Scholar
Roth, T. L., Lubin, F. D., Funk, A. J., & Sweatt, J. D. (2009). Lasting epigenetic influence of early-life adversity on the BDNF gene. Biological Psychiatry, 65, 760769.Google Scholar
Roy, B. N., Reid, R. L., & Van Vugt, D. A. (1999). The effects of estrogen and progesterone on corticotropin-releasing hormone and arginine vasopressin messenger ribonucleic acid levels in the paraventricular nucleus and supraoptic nucleus of the rhesus monkey. Endocrinology, 140, 21912198.Google Scholar
Sahin, E., Colla, S., Liesa, M., Moslehi, J., Müller, F. L., Guo, M., et al. (2011). Telomere dysfunction induces metabolic and mitochondrial compromise. Nature, 470, 359365.Google Scholar
Schieke, S. M., Phillips, D., McCoy, J. P., Aponte, A. M., Shen, R. F., Balaban, R. S., et al. (2006). The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. Journal of Biological Chemistry, 281, 2764327652.Google Scholar
Sellers, T. A., Kushi, L. H., Potter, J. D., Kaye, S. A., Nelson, C. L., McGovern, P. G., et al. (1992). Effect of family history, body-fat distribution, and reproductive factors on the risk of postmenopausal breast cancer. New England Journal of Medicine, 326, 13231329.Google Scholar
Shalev, I. (2012). Early life stress and telomere length: Investigating the connection and possible mechanisms. Bioessays, 34, 943952.Google Scholar
Shalev, I., & Belsky, J. (2016). Early-life stress and reproductive cost: A two-hit developmental model of accelerated aging? Medical Hypotheses, 90, 4147.Google Scholar
Shalev, I., Caspi, A., Ambler, A., Belsky, D. W., Chapple, S., Cohen, H. J., et al. (2014). Perinatal complications and aging indicators by midlife. Pediatrics, 134, e1315e1323.Google Scholar
Shalev, I., Entringer, S., Wadhwa, P. D., Wolkowitz, O. M., Puterman, E., Lin, J., et al. (2013). Stress and telomere biology: A lifespan perspective. Psychoneuroendocrinology, 38, 18351842.Google Scholar
Shalev, I., Moffitt, T. E., Braithwaite, A. W., Danese, A., Fleming, N. I., Goldman-Mellor, S., et al. (2014). Internalizing disorders and leukocyte telomere erosion: A prospective study of depression generalized anxiety disorder and post-traumatic stress disorder. Molecular Psychiatry, 19, 11631170.CrossRefGoogle ScholarPubMed
Shalev, I., Moffitt, T. E., Sugden, K., Williams, B., Houts, R. M., Danese, A., et al. (2013). Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: A longitudinal study. Molecular Psychiatry, 18, 576581.Google Scholar
Sharma, N. K., Reyes, A., Green, P., Caron, M. J., Bonini, M. G., Gordon, D. M., et al. (2011). Human telomerase acts as a hTR-independent reverse transcriptase in mitochondria. Nucleic Acids Research, 40, 712725.Google Scholar
Shen, J., Terry, M. B., Gurvich, I., Liao, Y., Senie, R. T., & Santella, R. M. (2007). Short telomere length and breast cancer risk: A study in sister sets. Cancer Research, 67, 55385544.Google Scholar
Shirtcliff, E. A., Coe, C. L., & Pollak, S. D. (2009). Early childhood stress is associated with elevated antibody levels to herpes simplex virus type 1. Proceedings of the National Academy of Sciences, 106, 29632967.Google Scholar
Simon, N. M., Smoller, J. W., McNamara, K. L., Maser, R. S., Zalta, A. K., Pollack, M. H., et al. (2006). Telomere shortening and mood disorders: Preliminary support for a chronic stress model of accelerated aging. Biological Psychiatry, 60, 432435.Google Scholar
Singhapol, C., Pal, D., Czapiewski, R., Porika, M., Nelson, G., & Saretzki, G. C. (2013). Mitochondrial telomerase protects cancer cells from nuclear DNA damage and apoptosis. PLOS ONE, 8, e52989.Google Scholar
Stearns, S. C. (1989). Trade-offs in life-history evolution. Functional Ecology, 3, 259268.Google Scholar
Stroud, L. R., Papandonatos, G. D., Huestis, M. A., Salisbury, A. L., Phipps, M. G., Niaura, R., et al. (2016). Epigenetic regulation of placental NR3C1: Mechanisms underlying prenatal programming of infant neurobehavior by maternal smoking? Child Development, 87, 4960.Google Scholar
Szyf, M. (2011). The early life social environment and DNA methylation: DNA methylation mediating the long-term impact of social environments early in life. Epigenetics, 6, 971978.Google Scholar
Tithers, J. M., & Ellis, B. J. (2008). Impact of fathers on daughters’ age of menarche: A genetically and environmentally controlled sibling study. Developmental Psychology, 44, 14091420.Google Scholar
Tomiyama, A. J., O'Donovan, A., Lin, J., Puterman, E., Lazaro, A., Chan, J., et al. (2012). Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. Physiology & Behavior, 106, 4045.Google Scholar
Trickett, P. K., Noll, J. G., & Putnam, F. W. (2011). The impact of sexual abuse on female development: Lessons from a multigenerational, longitudinal research study. Development and Psychopathology, 23, 453476.Google Scholar
Tyrka, A. R., Parade, S. H., Price, L. H., Kao, H. T., Porton, B., Philip, N. S., et al. (2015). Alterations of mitochondrial DNA copy number and telomere length with early adversity and psychopathology. Biological Psychiatry, 15, 7886.Google Scholar
Tyrka, A. R., Price, L. H., Marsit, C., Walters, O. C., & Carpenter, L. L. (2012). Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: Preliminary findings in healthy adults. PLOS ONE, 7, e30148.Google Scholar
Uchida, S., Hara, K., Kobayaski, A., Otsuki, K., Yamagata, H., Hobara, T., et al. (2011). Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron, 69, 359372.Google Scholar
Vamvakopoulos, N. C., & Chrousos, G. P. (1993). Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression: Potential implications for the sexual dimophism of the stress response and immune/inflammatory reaction. Journal of Clinical Investigation, 92, 18961902.Google Scholar
van IJzendoorn, M. H., & Bakermans-Kranenburg, M. (2015). Genetic differential susceptibility on trial: Meta-analytic support from randomized controlled experiments. Development and Psychopathology, 2, 151162.Google Scholar
Vartak, S., Deshpande, A., & Barve, S. (2014). Reduction in the telomere length in human T-lymphocytes on exposure to cortisol. Current Research in Medicine and Medical Sciences, 4, 2025.Google Scholar
Viau, V., & Meaney, M. J. (1991). Variations in the hypothalamic–pituitary–adrenal response to stress during the estrous cycle in the rat. Endocrinology, 129, 25032511.Google Scholar
von Zglinicki, T. (2002). Oxidative stress shortens telomeres. Trends in Biochemical Sciences, 27, 339344.Google Scholar
Waterland, R. A., & Michels, K. B. (2007). Epigenetic epidemiology of the developmental origins hypothesis. Annual Review Nutrition, 27, 363388.Google Scholar
Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004a). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854.Google Scholar
Weaver, I. C., Diorio, J., Seckl, J. R., Szyf, M., & Meaney, M. J. (2004b). Early environmental regulation of hippocampal glucocorticoid receptor gene expression: Characterization of intracellular mediators and potential genomic target sites. Neuropsychopharmocolgy Review, 38, 111123.Google Scholar
Wegman, H. L., & Stetler, C. (2009). A meta-analytic review of the effects of childhood abuse on medical outcomes in adulthood. Psychosomatic Medicine, 71, 805812.Google Scholar
Welberg, L. A. M., Seckl, J. R., & Holmes, M. C. (2001). Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: Possible implications for behaviour. Neuroscience, 104, 7179.Google Scholar
Wikgren, M., Maripuu, M., Karlsson, T., Nordfjäll, K., Bergdahl, J., Hultdin, J., et al. (2012). Short telomeres in depression and the general population are associated with a hypocortisolemic state. Biological Psychiatry, 71, 294300.Google Scholar
Wise, L., Palmer, J., Rothman, E., & Rosenberg, L.. (2009). Child abuse and early menarche: Findings from the Black Women's Health Study. American Journal of Public Health, 99, S460S466.Google Scholar
Wolkowitz, O. M., Mellon, S. H., Epel, E. S., Lin, J., Dhabhar, F. S., Su, Y., et al. (2011). Leukocyte telomere length in major depression: Correlations with chronicity, inflammation and oxidative stress-preliminary findings. PLOS ONE, 6, e17837.Google Scholar
Wu, M. L., Whittemore, A. S., Paffenbarger, R. S. Jr., Sarles, D. L., Kampert, J. B., Grosser, S., et al. (1988). Personal and environmental characteristics related to epithelial ovarian cancer: I. Reproductive and menstrual events and oral contraceptive use. American Journal of Epidemiology, 128, 12161227.Google Scholar
Yehuda, R., Daskalakis, N. P., Lehrner, A., Desarnaud, F., Bader, H. N., Makotkine, I., et al. (2014). Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring. American Journal of Psychiatry, 171, 872880.Google Scholar
Young, E. A. (1994). The role of gonadal steroids in hypothalamic–pituitary–adrenal axis regulation. Critical Reviews in Neurobiology, 9, 371381.Google Scholar
Zilbauer, M., Rayner, T. F., Clark, C., Coffey, A. J., Joyce, C. J., Palta, P., et al. (2013). Genome-wide methylation analyses of primary human leukocyte subsets identifies functionally important cell-type–specific hypomethylated regions. Blood, 122, e52e60.Google Scholar
Ziomkiewicz, A., Sancilio, A., Galbarczyk, A., Klimek, M., Jasienska, G., & Bribiescas, R. G. (2016). Evidence for the cost of reproduction in humans: High lifetime reproductive effort is associated with greater oxidative stress in post-menopausal women. PLOS ONE. Advance online publication.Google Scholar
Zhang, T. Y., & Meaney, M. J. (2010). Epigenetics and the environmental regulation of the genome and its function. Annual Review of Psychology, 61, 439466.Google Scholar