Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-21T23:25:24.408Z Has data issue: false hasContentIssue false

Income, cumulative risk, and longitudinal profiles of hypothalamic–pituitary–adrenal axis activity in preschool-age children

Published online by Cambridge University Press:  04 June 2015

Maureen Zalewski*
Affiliation:
University of Oregon
Liliana J. Lengua
Affiliation:
University of Washington
Stephanie F. Thompson
Affiliation:
University of Washington
Cara J. Kiff
Affiliation:
UCLA Nathanson Family Resilience Center
*
Address correspondence and reprint requests to: Maureen Zalewski, Department of Psychology, 325 Straub Hall, 1451 Onyx Street, University of Oregon, Eugene, OR 97403; E-mail: Zalewski@uoregon.edu.

Abstract

Environmental risk predicts disrupted basal cortisol levels in preschool children. However, little is known about the stability or variability of diurnal cortisol morning levels or slope patterns over time in young children. This study used latent profile analysis to identify patterns of the hypothalamic–pituitary–adrenal axis activity during the preschool period. Using a community sample (N = 306), this study measured income, cumulative risk, and children's diurnal cortisol (morning level and slope) four times across 2.5 years, starting when children were 36 months old. Latent profile analysis profiles indicated that there were predominantly stable patterns of diurnal cortisol level and slope over time and that these patterns were predicted by income and cumulative risk. In addition, there were curvilinear relations of income and cumulative risk to profiles of low morning cortisol level and flattened diurnal slope across time, suggesting that both lower and higher levels of income and cumulative risk were associated with a stress-sensitive physiological system. Overall, this study provides initial evidence for the role of environmental risk in predicting lower, flattened basal cortisol patterns that remain stable over time.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Petrov, B. N. & Czak, P. (Eds.), Proceedings of the 2nd International Symposium on Information Theory (pp. 267–281). Budapest: Akademiai Kiado.Google Scholar
Appleyard, K., Egeland, B., van Dulmen, M. H. M., & Sroufe, L. A. (2005). When more is not better: The role of cumulative risk in child behavior outcomes. Journal of Child Psychology and Psychiatry, 46, 235245. doi:http://dx.doi.org/10.1111/j.1469-7610.2004.00351.x CrossRefGoogle Scholar
Ashman, S. B., Dawson, G., Panagiotides, H., Yamada, E., & Wilkinson, C. W. (2002). Stress hormone levels of children of depressed mothers. Development and Psychopathology, 14, 333349. doi:http://dx.doi.org.pitt.idm.oclc.org/10.1017/S0954579402002080 CrossRefGoogle ScholarPubMed
Blair, C., Granger, D. A., Kivlighan, K. T., Mills-Koonce, R., Willoughby, M., Greenberg, M. T., et al. (2008). Maternal and child contributions to cortisol response to emotional arousal in young children from low-income, rural communities. Developmental Psychology, 44, 10951109. doi:10.1037/0012-1649.44.4.1095 CrossRefGoogle ScholarPubMed
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.CrossRefGoogle ScholarPubMed
Bruce, J., Davis, E. P., & Gunnar, M. R. (2002). Individual differences in children's cortisol response to the beginning of a new school year. Psychoneuroendocrinology, 27, 635650. doi:10.1016/S0306-4530(01)00031-2 CrossRefGoogle Scholar
Bruce, J., Fisher, P. A., Pears, K. C., & Levine, S. (2009). Morning cortisol levels in preschool-aged foster children: Differential effects of maltreatment type. Developmental Psychobiology, 51, 1423. doi:10.1002/dev.20333 CrossRefGoogle ScholarPubMed
Bush, N. R., Obradović, J., Adler, N., & Boyce, W. T. (2011). Kindergarten stressors and cumulative adrenocortical activation: The “first straws” of allostatic load? Development and Psychopathology, 23, 10891106. doi:http://dx.doi.org.pitt.idm.oclc.org/10.1017/S0954579411000514 CrossRefGoogle ScholarPubMed
Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13, 195212.CrossRefGoogle Scholar
Clements, A. D., & Parker, C. R. (1998). The relationship between salivary cortisol concentrations in frozen versus mailed samples. Psychoneuroendocrinology, 23, 613616. doi:http://dx.doi.org.pitt.idm.oclc.org/10.1016/S0306-4530(98)00031-6 CrossRefGoogle ScholarPubMed
Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330351. doi:10.1037/1082-989X.6.4.330 CrossRefGoogle ScholarPubMed
Cutuli, J. J., Wiik, K. L., Herbers, J. E., Gunnar, M. R., & Masten, A. S. (2010). Cortisol function among early school-aged homeless children. Psychoneuroendocrinology, 35, 833845. doi:http://dx.doi.org.pitt.idm.oclc.org/10.1016/j.psyneuen.2009.11.008 CrossRefGoogle ScholarPubMed
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The adaptive calibration model of stress responsivity. Neuroscience & Biobehavioral Reviews, 35, 15621592. doi:http://dx.doi.org.pitt.idm.oclc.org/10.1016/j.neubiorev.2010.11.007 CrossRefGoogle ScholarPubMed
Dougherty, L. R., Klein, D. N., Olino, T. M., Dyson, M., & Rose, S. (2009). Increased waking salivary cortisol and depression risk in preschoolers: The role of maternal history of melancholic depression and early child temperament. Journal of Child Psychology and Psychiatry, 50, 14951503. doi:10.1111/j.1469-7610.2009.02116.x CrossRefGoogle ScholarPubMed
Dowd, J. B., Simanek, A. M., & Aiello, A. E. (2009). Socio-economic status, cortisol and allostatic load: A review of the literature. International Journal of Epidemiology, 38, 12971309. doi:10.1093/ije/dyp277 CrossRefGoogle ScholarPubMed
Essex, M. J., Armstrong, J. M., Burk, L. R., Goldsmith, H. H., & Boyce, W. T. (2011). Biological sensitivity to context moderates the effects of the early teacher–child relationship on the development of mental health by adolescence. Development and Psychopathology, 23, 149161. doi:http://dx.doi.org.pitt.idm.oclc.org/10.1017/S0954579410000702 CrossRefGoogle ScholarPubMed
Evans, G. W., & English, K. (2002). The environment of poverty: Multiple stressor exposure, psychophysiological stress, and socioemotional adjustment. Child Development, 73, 12381248.CrossRefGoogle ScholarPubMed
Evans, G. W., & Kim, P. (2007). Childhood poverty and health: Cumulative risk exposure and stress dysregulation. Psychological Science, 18, 953957. doi:10.1111/j.1467-9280.2007.02008.x CrossRefGoogle ScholarPubMed
Evans, G. W., Li, D., & Sepanski Whipple, S. (2013). Cumulative risk and child development. Psychological Bulletin. Advance online publication. doi:http://dx.doi.org.pitt.idm.oclc.org/10.1037/a0031808 CrossRefGoogle ScholarPubMed
Flaherty, B. P., & Kiff, C. J. (2012). Latent class and latent profile models. In Cooper, H., Camic, P. M., Long, D. L., Panter, A. T., Rindskopf, D., & Sher, K. J. (Eds.), APA handbook of research methods in psychology: Vol. 3. Data analysis and research publication (pp. 391404). Washington, DC: American Psychological Association.Google Scholar
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515538. doi:10.1017/S0954579401003066 CrossRefGoogle Scholar
Gustafsson, P. E., Anckarsäter, H., Lichtenstein, P., Nelson, N., & Gustafsson, P. A. (2010). Does quantity have a quality all its own? Cumulative adversity and up- and down-regulation of circadian salivary cortisol levels in healthy children. Psychoneuroendocrinology, 35, 14101415. doi:http://dx.doi.org.pitt.idm.oclc.org/10.1016/j.psyneuen.2010.04.004 CrossRefGoogle ScholarPubMed
Halligan, S. L., Herbert, J., Goodyer, I. M., & Murray, L. (2004). Exposure to postnatal depression predicts elevated cortisol in adolescent offspring. Biological Psychiatry, 55, 376381. doi:10.1016/j.biopsych.2003.09.013 CrossRefGoogle ScholarPubMed
Jung, T., & Wickrama, K. A. S. (2008). An introduction to latent class growth analysis and growth mixture modeling. Social and Personality Psychology Compass, 2, 302317. doi:10.1111/j.1751-9004.2007.00054.x CrossRefGoogle Scholar
Larson, K., Russ, S. A., Crall, J. J., & Halfon, N. (2008). Influence of multiple social risks on children's health. Pediatrics, 121, 337344.CrossRefGoogle ScholarPubMed
Laurent, H. K., Ablow, J. C., & Measelle, J. (2012). Taking stress response out of the box: Stability, discontinuity, and temperament effects on HPA and SNS across social stressors in mother–infant dyads. Developmental Psychology, 48, 3545. doi:10.1037/a0025518 CrossRefGoogle ScholarPubMed
Laurent, H. K., Gilliam, K. S., Bruce, J., & Fisher, P. A. (2014). HPA stability for children in foster care: Mental health implications and moderation by early intervention. Developmental Psychobiology, 56, 14061415. doi:10.1002/dev.21226 CrossRefGoogle ScholarPubMed
Laurent, H. K., Neiderhiser, J. M., Natsuaki, M. N., Shaw, D. S., Fisher, P. A., Reiss, D., et al. (2013). Stress system development from age 4.5 to 6: Family environment predictors and adjustment implications of HPA activity stability versus change. Developmental Psychobiology. Advance online publication. doi:10.1002/dev.21103 Google ScholarPubMed
Lengua, L. J., & Long, A. C. (2002). The role of emotionality and self-regulation in the appraisal–coping process: Tests of direct and moderating effects. Journal of Applied Developmental Psychology, 23, 471493.CrossRefGoogle Scholar
Luthar, S. S. (2003). The culture of affluence: Psychological costs of material wealth. Child Development, 74, 15811593. doi:10.1046/j.1467-8624.2003.00625.x CrossRefGoogle ScholarPubMed
Magidson, J., & Vermunt, J. K. (2004). Latent class models. In Kaplan, D. (Ed.), The Sage handbook of qualitative methodology for the social science (pp. 175198). Thousand Oaks, CA: Sage.Google Scholar
McEwen, B. S. (1998a). Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 3334.CrossRefGoogle ScholarPubMed
McEwen, B. S. (1998b). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171179.CrossRefGoogle ScholarPubMed
Miller, G. E., Chen, E., & Zhou, E. S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychological Bulletin, 133, 2545.CrossRefGoogle ScholarPubMed
Muthen, B., & Muthen, L. (2006). Mplus user's guide (6th ed.). Los Angeles, CA: Author.Google Scholar
Radloff, L. S. (1977). The CES-D Scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385401. doi:10.1177/014662167700100306 CrossRefGoogle Scholar
Rotenberg, S., McGrath, J. J., Roy-Gagnon, M.-H., & Tu, M. T. (2012). Stability of the diurnal cortisol profile in children and adolescents. Psychoneuroendocrinology, 37, 19811989. doi:10.1016/j.psyneuen.2012.04.014 CrossRefGoogle ScholarPubMed
Ruttle, P. L., Shirtcliff, E. A., Serbin, L. A., Ben-Dat Fisher, D., Stack, D. M., & Schwartzman, A. E. (2011). Disentangling psychobiological mechanisms underlying internalizing and externalizing behaviors in youth: Longitudinal and concurrent associations with cortisol. Hormones and Behavior, 59, 123132. doi:http://dx.doi.org.pitt.idm.oclc.org/10.1016/j.yhbeh.2010.10.015 CrossRefGoogle ScholarPubMed
Sandler, I. N., Ramirez, R., & Reynolds, K. D. (1986). Life stress for children of divorce, bereaved, and asthmatic children. Paper presented at the annual meeting of the American Psychological Association, Washington, DC.Google Scholar
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461464.CrossRefGoogle Scholar
Sclove, L. S. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometricka, 52, 333343.CrossRefGoogle Scholar
Shirtcliff, E. A., Allison, A. L., Armstrong, J. M., Slattery, M. J., Kalin, N. H., & Essex, M. J. (2012). Longitudinal stability and developmental properties of salivary cortisol levels and circadian rhythms from childhood to adolescence. Developmental Psychobiology, 54, 493502.CrossRefGoogle ScholarPubMed
Shirtcliff, E. A., Granger, D. A., Booth, A., & Johnson, D. (2005). Low salivary cortisol levels and externalizing behavior problems in youth. Development and Psychopathology, 17, 167184. doi:http://dx.doi.org.pitt.idm.oclc.org/10.1017/S0954579405050091 CrossRefGoogle ScholarPubMed
Suglia, S. F., Duarte, C. S., Chambers, E. C., & Boynton-Jarrett, R. (2012). Cumulative social risk and obesity in early childhood. Pediatrics, 129, e1173e1179. doi:http://dx.doi.org.pitt.idm.oclc.org/10.1542/peds.2011-2456 CrossRefGoogle ScholarPubMed
Turner-Cobb, J. M., Rixon, L., & Jessop, D. S. (2008). A prospective study of diurnal cortisol responses to the social experience of school transition in four-year-old children: Anticipation, exposure, and adaptation. Developmental Psychobiology, 50, 377389. doi:10.1002/dev.20298 CrossRefGoogle Scholar
Yang, C. C. (2006). Evaluation latent class analyses in qualitative phenotype identification. Computational Statistics & Data Analysis, 50, 10901104.CrossRefGoogle Scholar