Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-17T15:16:40.318Z Has data issue: false hasContentIssue false

Prenatal programming of postnatal plasticity revisited—And extended

Published online by Cambridge University Press:  02 August 2018

Sarah Hartman*
Affiliation:
University of California, Davis
Jay Belsky
Affiliation:
University of California, Davis
*
Address correspondence and reprint requests to: Sarah Hartman, One Shields Avenue, 3321 Hart Hall, Davis, CA 95616; E-mail: slhartman@ucdavis.edu.

Abstract

Two sets of evidence reviewed herein, one indicating that prenatal stress is associated with elevated behavioral and physiological dysregulation and the other that such phenotypic functioning is itself associated with heightened susceptibility to positive and negative environmental influences postnatally, raises the intriguing hypothesis first advanced by Pluess and Belsky (2011) that prenatal stress fosters, promotes, or “programs” postnatal developmental plasticity. Here we review further evidence consistent with this proposition, including new experimental research systematically manipulating both prenatal stress and postnatal rearing. Collectively this work would seem to explain why prenatal stress has so consistently been linked to problematic development: stresses encountered prenatally are likely to continue postnatally, thereby adversely affecting the development of children programmed (by prenatal stress) to be especially susceptible to environmental effects. Less investigated are the potential benefits prenatal stress may promote, due to increased plasticity, when the postnatal environment proves to be favorable. Future directions of research pertaining to potential mechanisms instantiating postnatal plasticity and moderators of such prenatal-programming effects are outlined.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. K., Rhees, R. W., & Fleming, D. E. (1985). Effects of prenatal stress on differentiation of the sexually dimorphic nucleus of the preoptic area (SDN-POA) of the rat brain. Brain Research, 332, 113118.Google Scholar
Aye, I. L., & Keelan, J. A. (2013). Placental ABC transporters, cellular toxicity and stress in pregnancy. Chemico-Biological Interactions, 203, 456466. doi:10.1016/j.cbi.2013.03.007Google Scholar
Babineau, V., Green, C. G., Jolicoeur-Martineau, A., Bouvette-Turcot, A. A., Minde, K., Sassi, R., … Lydon, J. (2015). Prenatal depression and 5-HTTLPR interact to predict dysregulation from 3 to 36 months–A differential susceptibility model. Journal of Child Psychology and Psychiatry, 56, 2129. doi:10.1111/jcpp.12246Google Scholar
Baibazarova, E., van de Beek, C., Cohen-Kettenis, P. T., Buitelaar, J., Shelton, K. H., & van Goozen, S. H. (2013). Influence of prenatal maternal stress, maternal plasma cortisol and cortisol in the amniotic fluid on birth outcomes and child temperament at 3 months. Psychoneuroendocrinology, 38, 907915. doi:10.1016/j.psyneuen.2012.09.015Google Scholar
Bailey, M. T., Lubach, G. R., & Coe, C. L. (2004). Prenatal stress alters bacterial colonization of the gut in infant monkeys. Journal of Pediatric Gastroenterology and Nutrition, 38, 414421. doi: 10.1097/00005176-200404000-00009Google Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2015). The hidden efficacy of interventions: Gene × Environment experiments from a differential susceptibility perspective. Annual Review of Psychology, 66, 381409.Google Scholar
Barker, D. J. P. (1998). Mothers, babies and health in later life. Philadelphia, PA: Elsevier Health Sciences.Google Scholar
Bateson, P., Barker, D., Clutton-Brock, T., Deb, D., D'udine, B., Foley, R. A., … McNamara, J. (2004). Developmental plasticity and human health. Nature, 430, 419421. doi:10.1038/nature02725Google Scholar
Belsky, J. (1997). Variation in susceptibility to rearing influences: An evolutionary argument. Psychological Inquiry, 8, 182186. doi:10.1207/s15327965pli0803_3Google Scholar
Belsky, J. (2000). Conditional and alternative reproductive strategies: Individual differences in susceptibility to rearing experiences. In Rodgers, J. L., Rowe, D. C. & Miller, W. B. (Eds.), Genetic influences on human fertility and sexuality: Theoretical and empirical contributions from the biological and behavioral sciences (pp. 127146). Boston: Springer.Google Scholar
Belsky, J. (2005). Differential susceptibility to rearing influences: An evolutionary hypothesis and some evidence. In Ellis, B. & Bjorklund, D. (Eds.), Origins of the social mind: Evolutionary psychology and child development (pp. 139163). New York: Guildford Press.Google Scholar
Belsky, J. (2012). The development of human reproductive strategies: Progress and prospects. Current Directions in Psychological Science, 21, 310316. doi:10.1177/0963721412453588Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304. doi:10.1111/j.1467-8721.2007.00525.xGoogle Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885. doi:10.1037/a0017376Google Scholar
Belsky, J., & Pluess, M. (2013). Beyond risk, resilience, and dysregulation: Phenotypic plasticity and human development. Development and Psychopathology, 25, 1243. doi:10.1017/s095457941300059xGoogle Scholar
Belsky, J., Steinberg, L., & Draper, P. (1991). Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Development, 62, 647670. doi:10.1111/j.1467-8624.1991.tb01558.xGoogle Scholar
Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., … Verdu, E. F. (2011). The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 141, 599609. doi:10.1053/j.gastro.2011.04.052Google Scholar
Blakeley, P. M., Capron, L. E., Jensen, A. B., O'Donnell, K. J., & Glover, V. (2013). Maternal prenatal symptoms of depression and down regulation of placental monoamine oxidase A expression. Journal of Psychosomatic Research, 75, 341345. doi:10.1016/j.jpsychores.2013.07.002Google Scholar
Bloch, B., Guitteny, A. F., Chouham, S., Mougin, C., Roget, A., & Teoule, R. (1990). Topography and ontogeny of the neurons expressing vasopressin, oxytocin, and somatostatin genes in the rat brain: An analysis using radioactive and biotinylated oligonucleotides. Cellular and Molecular Neurobiology, 10, 99112. doi:10.1007/BF00733638Google Scholar
Bogdan, R., Agrawal, A., Gaffrey, M. S., Tillman, R., & Luby, J. L. (2014). Serotonin transporter-linked polymorphic region (5-HTTLPR) genotype and stressful life events interact to predict preschool-onset depression: A replication and developmental extension. Journal of Child Psychology and Psychiatry, 55, 448457. doi:10.1111/jcpp.12142Google Scholar
Börzsönyi, B., Demendi, C., Pajor, A., Rigó, J., Marosi, K., Ágota, A., … Joó, J. G. (2012). Gene expression patterns of the 11β-hydroxysteroid dehydrogenase 2 enzyme in human placenta from intrauterine growth restriction: The role of impaired feto-maternal glucocorticoid metabolism. European Journal of Obstetrics and Gynecology and Reproductive Biology, 161, 1217. doi:10.1016/j.ejogrb.2011.12.013Google Scholar
Boyce, W. T., Adams, S., Tschann, J. M., Cohen, F., Wara, D., & Gunnar, M. R. (1995). Adrenocortical and behavioral predictors of immune responses to starting school. Pediatric Research, 38, 10091017. doi:10.1203/00006450-199512000-00030Google Scholar
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. an evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301. doi:10.1017/s0954579405050145Google Scholar
Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., … Cryan, J. F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences, 108, 1605016055. doi:10.1073/pnas.1102999108Google Scholar
Brody, G. H., Miller, G. E., Yu, T., Beach, S. R., & Chen, E. (2016). Supportive family environments ameliorate the link between racial discrimination and epigenetic aging: A replication across two longitudinal cohorts. Psychological Science, 27, 530541. doi:10.1177/0956797615626703Google Scholar
Brunton, P. J., & Russell, J. A. (2010). Prenatal social stress in the rat programmes neuroendocrine and behavioural responses to stress in the adult offspring: Sex-specific effects. Journal of Neuroendocrinology, 22, 258271. doi:10.1111/j.1365-2826.2010.01969.xGoogle Scholar
Burrows, E. L., & Hannan, A. J. (2013). Decanalization mediating gene-environment interactions in schizophrenia and other psychiatric disorders with neurodevelopmental etiology. Frontiers in Behavioral Neuroscience, 7, 157.Google Scholar
Bush, N. R., Allison, A. L., Miller, A. L., Deardorff, J., Adler, N. E., & Boyce, W. T. (2017). Socioeconomic disparities in childhood obesity risk: Association with an oxytocin receptor polymorphism. JAMA Pediatrics, 171, 6167.Google Scholar
Buss, C., Davis, E. P., Muftuler, L. T., Head, K., & Sandman, C. A. (2010). High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6–9-year-old children. Psychoneuroendocrinology, 35, 141153. doi:10.1016/j.psyneuen.2009.07.010Google Scholar
Canli, T., & Lesch, K. P. (2007). Long story short: The serotonin transporter in emotion regulation and social cognition. Nature Neuroscience, 10, 11031109. doi:10.1038/nn1964Google Scholar
Carter, C. S. (2014). Oxytocin pathways and the evolution of human behavior. Annual Review of Psychology, 65, 1739. doi:10.1146/annurev-psych-010213-115110Google Scholar
Carter, C. S., Grippo, A. J., Pournajafi-Nazarloo, H., Ruscio, M. G., & Porges, S. W. (2008). Oxytocin, vasopressin and sociality. Progress in Brain Research, 170, 331336. doi:10.1016/s0079-6123(08)00427-5Google Scholar
Champoux, M., Bennett, A., Shannon, C., Higley, J. D., Lesch, K. P., & Suomi, S. J. (2002). Serotonin transporter gene polymorphism, differential early rearing, and behavior in rhesus monkey neonates. Molecular Psychiatry, 7, 1058. doi:10.1038/sj.mp.4001157Google Scholar
Chen, F. R., Raine, A., Rudo-Hutt, A. S., Glenn, A. L., Soyfer, L., & Granger, D. A. (2015). Harsh discipline and behavior problems: The moderating effects of cortisol and alpha-amylase. Biological Psychology, 104, 1927. doi:10.1016/j.biopsycho.2014.11.005Google Scholar
Chen, J., Nolte, V., & Schlötterer, C. (2015). Temperature stress mediates decanalization and dominance of gene expression in Drosophila melanogaster. PLOS Genetics, 11, e1004883.Google Scholar
Christian, L. M., Galley, J. D., Hade, E. M., Schoppe-Sullivan, S., Dush, C. K., & Bailey, M. T. (2015). Gut microbiome composition is associated with temperament during early childhood. Brain, Behavior, and Immunity, 45, 118127. doi:10.1016/j.bbi.2014.10.018Google Scholar
Cicchetti, D., Rogosch, F. A., & Thibodeau, E. L. (2012). The effects of child maltreatment on early signs of antisocial behavior: Genetic moderation by tryptophan hydroxylase, serotonin transporter, and monoamine oxidase A genes. Development and Psychopathology, 24, 907928. doi:10.1017/S0954579612000442Google Scholar
Conradt, E., Lester, B. M., Appleton, A. A., Armstrong, D. A., & Marsit, C. J. (2013). The roles of DNA methylation of NR3C1 and 11β-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics, 8, 13211329. doi:10.4161/epi.26634Google Scholar
Conradt, E., Measelle, J., & Ablow, J. C. (2013). Poverty, problem behavior, and promise: Differential susceptibility among infants reared in poverty. Psychological Science, 24, 235242. doi:10.1177/0956797612457381Google Scholar
Conway, A., & Stifter, C. A. (2012). Longitudinal antecedents of executive function in preschoolers. Child Development, 83, 10221036. doi:10.1111/j.1467-8624.2012.01756.xGoogle Scholar
Coussons-Read, M. E., Okun, M. L., & Nettles, C. D. (2007). Psychosocial stress increases inflammatory markers and alters cytokine production across pregnancy. Brain, Behavior, and Immunity, 21, 343350. doi:10.1016/j.bbi.2006.08.006Google Scholar
Cruceanu, C., Matosin, N., & Binder, E. B. (2017). Interactions of early-life stress with the genome and epigenome: From prenatal stress to psychiatric disorders. Current Opinion in Behavioral Sciences, 14, 167171. doi:10.1016/j.cobeha.2017.04.001Google Scholar
Davies, P. T., Sturge-Apple, M. L., & Cicchetti, D. (2011). Interparental aggression and children's adrenocortical reactivity: Testing an evolutionary model of allostatic load. Development and Psychopathology, 23, 801814. doi:10.1017/S0954579411000319Google Scholar
Davis, E. P., Glynn, L. M., Schetter, C. D., Hobel, C., Chicz-Demet, A., & Sandman, C. A. (2007). Prenatal exposure to maternal depression and cortisol influences infant temperament. Journal of the American Academy of Child and Adolescent Psychiatry, 46, 737746. doi:10.1097/chi.0b013e318047b775Google Scholar
Davis, E. P., Glynn, L. M., Waffarn, F., & Sandman, C. A. (2011). Prenatal maternal stress programs infant stress regulation. Journal of Child Psychology and Psychiatry, 52, 119129. doi:10.1111/j.1469-7610.2010.02314.xGoogle Scholar
Davis, E. P., & Pfaff, D. (2014). Sexually dimorphic responses to early adversity: Implications for affective problems and autism spectrum disorder. Psychoneuroendocrinology, 49, 1125. doi:10.1016/j.psyneuen.2014.06.014Google Scholar
Davis, E. P., & Sandman, C. A. (2010). The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Development, 81, 131148. doi:10.1111/j.1467-8624.2009.01385.xGoogle Scholar
Davis, E. P., Snidman, N., Wadhwa, P. D., Glynn, L. M., Schetter, C. D., & Sandman, C. A. (2004). Prenatal maternal anxiety and depression predict negative behavioral reactivity in infancy. Infancy, 6, 319331. doi:10.1207/s15327078in0603_1Google Scholar
Del Giudice, M., Barrett, E. S., Belsky, J., Hartman, S., Martel, M. M., Sangenstedt, S., & Kuzawa, C. W. (2018). Individual differences in developmental plasticity: A role for early androgens? Psychoneuroendocrinology, 90, 165173.Google Scholar
Demendi, C., Börzsönyi, B., Pajor, A., Rigó, J., Nagy, Z. B., Szentpéteri, I., & Joó, J. G. (2012). Abnormal fetomaternal glucocorticoid metabolism in the background of premature delivery: Placental expression patterns of the 11β-hydroxysteroid dehydrogenase 2 gene. European Journal of Obstetrics and Gynecology and Reproductive Biology, 165, 210214. doi:10.1016/j.ejogrb.2012.08.009Google Scholar
Devlin, A. M., Brain, U., Austin, J., & Oberlander, T. F. (2010). Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLOS ONE, 5, e12201. doi:10.1371/journal.pone.0012201Google Scholar
DeVries, G. J., Buijs, R. M., van Leeuwen, F. W., Caffe, A. R., & Swaab, D. F. (1985). The vasopressinergic innervation of the brain in normal and castrated rats. Journal of Comparative Neurology, 233, 236254. doi:10.1002/cne.902330206Google Scholar
de Weerth, C., Fuentes, S., Puylaert, P., & de Vos, W. M. (2013). Intestinal microbiota of infants with colic: Development and specific signatures. Pediatrics, 131, e550e558. doi: 10.1542/peds.2012-1449Google Scholar
de Weerth, C., van Hees, Y., & Buitelaar, J. K. (2003). Prenatal maternal cortisol levels and infant behavior during the first 5 months. Early Human Development, 74, 139151. doi:10.1016/s0378-3782(03)00088-4Google Scholar
Dich, N., Doan, S. N., & Evans, G. W. (2015). Children's emotionality moderates the association between maternal responsiveness and allostatic load: Investigation into differential susceptibility. Child Development, 86, 936944. doi:10.1111/cdev.12346Google Scholar
DiPietro, J. A., Novak, M. F., Costigan, K. A., Atella, L. D., & Reusing, S. P. (2006). Maternal psychological distress during pregnancy in relation to child development at age two. Child Development, 77, 573587. doi:10.1111/j.1467-8624.2006.00891.xGoogle Scholar
Dix, T., & Yan, N. (2014). Mothers' depressive symptoms and infant negative emotionality in the prediction of child adjustment at age 3: Testing the maternal reactivity and child vulnerability hypotheses. Development and Psychopathology, 26, 111124. doi:10.1017/S0954579413000898Google Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728. doi:10.1017/S0954579410000611Google Scholar
Ellis, B. J., Shirtcliff, E. A., Boyce, W. T., Deardorff, J., & Essex, M. J. (2011). Quality of early family relationships and the timing and tempo of puberty: Effects depend on biological sensitivity to context. Development and Psychopathology, 23, 8599. doi:10.1017/S0954579410000660Google Scholar
Entringer, S., Buss, C., & Wadhwa, P. D. (2015). Prenatal stress, development, health and disease risk: A psychobiological perspective—2015 Curt Richter Award Paper. Psychoneuroendocrinology, 62, 366375. doi:10.1016/j.psyneuen.2015.08.019Google Scholar
Essex, M. J., Armstrong, J. M., Burk, L. R., Goldsmith, H. H., & Boyce, W.T. (2011). Biological sensitivity to context moderates the effects of the early teacher–child relationship on the development of mental health by adolescence. Development and Psychopathology, 23, 149161. doi:10.1017/s0954579410000702Google Scholar
Field, T., Diego, M., Dieter, J., Hernandez-Reif, M., Schanberg, S., Kuhn, C., … Bendell, D. (2004). Prenatal depression effects on the fetus and the newborn. Infant Behavior and Development, 27, 216229. doi:10.1016/s0163-6383(04)00012-8Google Scholar
Figueiredo, B., Canário, C., & Field, T. (2014). Breastfeeding is negatively affected by prenatal depression and reduces postpartum depression. Psychological Medicine, 44, 927936.Google Scholar
Frankenhuis, W. E., & Del Giudice, M. (2012). When do adaptive developmental mechanisms yield maladaptive outcomes? Developmental Psychology, 48, 628.Google Scholar
Gaspar, P., Cases, O., & Maroteaux, L. (2003). The developmental role of serotonin: News from mouse molecular genetics. Nature Reviews Neuroscience, 4, 10021012. doi:10.1038/nrn1256Google Scholar
Gitau, R., Adams, D., Fisk, N. M., & Glover, V. (2005). Fetal plasma testosterone correlates positively with cortisol. Archives of Disease in Childhood—Fetal and Neonatal Edition, 90, F166F169.Google Scholar
Gitau, R., Cameron, A., Fisk, N. M., & Glover, V. (1998). Fetal exposure to maternal cortisol. Lancet, 352, 707708. doi:10.1016/S0140-6736(05)60824-0Google Scholar
Glover, V. (2011). Annual Research Review: Prenatal stress and the origins of psychopathology: An evolutionary perspective. Journal of Child Psychology and Psychiatry, 52, 356367. doi:10.1111/j.1469-7610.2011.02371.xGoogle Scholar
Glover, V. (2014). Maternal depression, anxiety and stress during pregnancy and child outcome; what needs to be done. Best Practice & Research: Clinical Obstetrics & Gynaecology, 28, 2535. doi:10.1016/j.bpobgyn.2013.08.017Google Scholar
Glover, V., Bergman, K., Sarkar, P., & O'Connor, T. G. (2009). Association between maternal and amniotic fluid cortisol is moderated by maternal anxiety. Psychoneuroendocrinology, 34, 430435.Google Scholar
Gluckman, P. D., Hanson, M. A., Spencer, H. G., & Bateson, P. (2005). Environmental influences during development and their later consequences for health and disease: Implications for the interpretation of empirical studies. Proceedings of the Royal Society of London B: Biological Sciences, 272, 671677. doi:10.1098/rspb.2004.3001Google Scholar
Green, C. G., Babineau, V., Jolicoeur-Martineau, A., Bouvette-Turcot, A. A., Minde, K., Sassi, R., … Steiner, M. (2017). Prenatal maternal depression and child serotonin transporter linked polymorphic region (5-HTTLPR) and dopamine receptor D4 (DRD4) genotype predict negative emotionality from 3 to 36 months. Development and Psychopathology, 29, 901917. doi:10.1017/S0954579416000560Google Scholar
Grossman, A. W., Churchill, J. D., McKinney, B. C., Kodish, I. M., Otte, S. L., & Greenough, W. T. (2003). Experience effects on brain development: Possible contributions to psychopathology. Journal of Child Psychology and Psychiatry, 44, 3363. doi:10.1111/1469-7610.t01-1-00102Google Scholar
Grundwald, N. J., Benítez, D. P., & Brunton, P. J. (2016). Sex-dependent effects of prenatal stress on social memory in rats: A role for differential expression of central vasopressin-1a receptors. Journal of Neuroendocrinology, 28. doi:10.1111/jne.12343Google Scholar
Gueron-Sela, N., Atzaba-Poria, N., Meiri, G., & Marks, K. (2015). The caregiving environment and developmental outcomes of preterm infants: Diathesis stress or differential susceptibility effects? Child Development, 86, 10141030. doi:10.1111/cdev.12359Google Scholar
Gur, T. L., Shay, L., Palkar, A. V., Fisher, S., Varaljay, V. A., Dowd, S., & Bailey, M. T. (2017). Prenatal stress affects placental cytokines and neurotrophins, commensal microbes, and anxiety-like behavior in adult female offspring. Brain, Behavior, and Immunity, 64, 5058. doi:10.1016/j.bbi.2016.12.021Google Scholar
Gutteling, B. M., de Weerth, C., & Buitelaar, J. K. (2005). Prenatal stress and children's cortisol reaction to the first day of school. Psychoneuroendocrinology, 30, 541549. doi: 10.1016/j.psyneuen.2005.01.002Google Scholar
Hankin, B. L., Nederhof, E., Oppenheimer, C. W., Jenness, J., Young, J. F., Abela, J. R. Z., … Oldehinkel, A. J. (2011). Differential susceptibility in youth: Evidence that 5-HTTLPR × Positive Parenting is associated with positive affect “for better and worse.” Translational Psychiatry, 1, e44. doi:10.1038/tp.2011.44Google Scholar
Hartman, S., Freeman, S. M., Bales, K. L., & Belsky, J. (2018). Prenatal stress as a risk—and opportunity—factor. Psychological Science, 29, 572580.Google Scholar
Hartman, S., Sung, S., Simpson, J. A., Schlomer, G. L., & Belsky, J. (2017). Decomposing environmental unpredictability in forecasting adolescent and young adult development: A two-sample study. Development and Psychopathology. Advance online publication.Google Scholar
Henry, C., Kabbaj, M., Simon, H., Moal, M., & Maccari, S. (1994). Prenatal stress increases the hypothalamo-pituitary-adrenal axis response in young and adult rats. Journal of Neuroendocrinology, 6, 341345. doi:10.1111/j.1365-2826.1994.tb00591.xGoogle Scholar
Hompes, T., Izzi, B., Gellens, E., Morreels, M., Fieuws, S., Pexsters, A., … Verhaeghe, J. (2013). Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. Journal of Psychiatric Research, 47, 880891. doi:10.1016/j.jpsychires.2013.03.009Google Scholar
Huizink, A. C., De Medina, P. G. R., Mulder, E. J., Visser, G. H., & Buitelaar, J. K. (2002). Psychological measures of prenatal stress as predictors of infant temperament. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 10781085.Google Scholar
Jaffee, S. R., & Price, T. S. (2007). Gene–environment correlations: A review of the evidence and implications for prevention of mental illness. Molecular Psychiatry, 12, 432442. doi:10.1038/sj.mp.4001950Google Scholar
Jansson, T., & Powell, T. L. (2007). Role of the placenta in fetal programming: Underlying mechanisms and potential interventional approaches. Clinical Science, 113, 113. doi:10.1042/CS20060339Google Scholar
Johansson, A., Bergman, H., Corander, J., Waldman, I. D., Karrani, N., Salo, B., … Westberg, L. (2012). Alcohol and aggressive behavior in men—Moderating effects of oxytocin receptor gene (OXTR) polymorphisms. Genes, Brain and Behavior, 11, 214221. doi:10.1111/j.1601-183X.2011.00744.xGoogle Scholar
Kertes, D. A., Kamin, H. S., Hughes, D. A., Rodney, N. C., Bhatt, S., & Mulligan, C. J. (2016). Prenatal maternal stress predicts methylation of genes regulating the hypothalamic–pituitary–adrenocortical system in mothers and newborns in the Democratic Republic of Congo. Child Development, 87, 6172. doi:10.1111/cdev.12487Google Scholar
Khashan, A. S., Abel, K. M., McNamee, R., Pedersen, M. G., Webb, R. T., Baker, P. N., … Mortensen, P. B. (2008). Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Archives of General Psychiatry, 65, 146152. doi:10.1001/archgenpsychiatry.2007.20Google Scholar
Kim, S., & Kochanska, G. (2012). Child temperament moderates effects of parent–child mutuality on self-regulation: A relationship-based path for emotionally negative infants. Child Development, 83, 12751289. doi:10.1111/j.1467–8624.2012.01778.xGoogle Scholar
Kim, S. J., Young, L. J., Gonen, D., Veenstra-vanderWeele, J., Courchesne, R., Courchesne, E., … Insel, T. R. (2002). Transmission disequilibrium testing of arginine vasopressin receptor 1A (AVPR1A) polymorphisms in autism. Molecular Psychiatry, 7, 503. doi:10.1038/sj.mp.4001125Google Scholar
Kochanska, G., Kim, S., Barry, R. A., & Philibert, R. A. (2011). Children's genotypes interact with maternal responsive care in predicting children's competence: Diathesis–stress or differential susceptibility? Development and Psychopathology, 23, 605616. doi:10.1017/S0954579411000071Google Scholar
Kofman, O. (2002). The role of prenatal stress in the etiology of developmental behavioural disorders. Neuroscience and Biobehavioral Reviews, 26, 457470. doi:10.1016/S0149-7634(02)00015-5Google Scholar
Lakatos, K., Nemoda, Z., Birkas, E., Ronai, Z., Kovacs, E., Ney, K., … Gervai, J. (2003). Association of D4 dopamine receptor gene and serotonin transporter promoter polymorphisms with infants' response to novelty. Molecular Psychiatry, 8, 9097. doi:10.1038/sj.mp.4001212Google Scholar
Landry, S. H., Smith, K. E., & Swank, P. R. (2006). Responsive parenting: Establishing early foundations for social, communication, and independent problem-solving skills. Developmental Psychology, 42, 627. doi:10.1037/0012-1649.42.4.627Google Scholar
Landry, S. H., Smith, K. E., Swank, P. R., Assel, M. A., & Vellet, S. (2001). Does early responsive parenting have a special importance for children's development or is consistency across early childhood necessary? Developmental Psychology, 37, 387. doi:10.1037/0012-1649.37.3.387Google Scholar
Laplante, D. P., Barr, R. G., Brunet, A., Du Fort, G. G., Meaney, M. L., Saucier, J. F., … King, S. (2004). Stress during pregnancy affects general intellectual and language functioning in human toddlers. Pediatric Research, 56, 400410. doi:10.1203/01.PDR.0000136281.34035.44Google Scholar
Laplante, D. P., Brunet, A., & King, S. (2015). The effects of maternal stress and illness during pregnancy on infant temperament: Project Ice Storm. Pediatric Research, 79, 107113. doi:10.1038/pr.2015.177Google Scholar
Laplante, D. P., Brunet, A., Schmitz, N., Ciampi, A., & King, S. (2008). Project Ice Storm: prenatal maternal stress affects cognitive and linguistic functioning in 5½-year-old children. Journal of the American Academy of Child & Adolescent Psychiatry, 47, 10631072. doi:10.1097/CHI.0b013e31817eec80Google Scholar
Laurent, H. K., Leve, L. D., Neiderhiser, J. M., Natsuaki, M. N., Shaw, D. S., Harold, G. T., & Reiss, D. (2013). Effects of prenatal and postnatal parent depressive symptoms on adopted child HPA regulation: Independent and moderated influences. Developmental Psychology, 49, 876. doi:10.1037/a0028800Google Scholar
Lee, P. R., Brady, D. L., Shapiro, R. A., Dorsa, D. M., & Koenig, J. I. (2007). Prenatal stress generates deficits in rat social behavior: Reversal by oxytocin. Brain Research, 1156, 152167. doi:10.1016/j.brainres.2007.04.042Google Scholar
Lilliecreutz, C., Larén, J., Sydsjö, G., & Josefsson, A. (2016). Effect of maternal stress during pregnancy on the risk for preterm birth. BMC Pregnancy and Childbirth, 16, 5. doi:10.1186/s12884-015-0775-xGoogle Scholar
Lucassen, P. J., Bosch, O. J., Jousma, E., Krömer, S. A., Andrew, R., Seckl, J. R., & Neumann, I. D. (2009). Prenatal stress reduces postnatal neurogenesis in rats selectively bred for high, but not low, anxiety: Possible key role of placental 11β-hydroxysteroid dehydrogenase type 2. European Journal of Neuroscience, 29, 97103. doi:10.1111/j.1460-9568.2008.06543.xGoogle Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445. doi:10.1038/nrn2639Google Scholar
Maccari, S., Krugers, H. J., Morley-Fletcher, S., Szyf, M., & Brunton, P. J. (2014). The consequences of early-life adversity: Neurobiological, behavioural and epigenetic adaptations. Journal of Neuroendocrinology, 26, 707723. doi:10.1111/jne.12175Google Scholar
Martin, R. P., Noyes, J., Wisenbaker, J., & Huttenen, M. O. (1999). Prediction of early childhood negative emotionality and inhibition from maternal distress during pregnancy. Merrill Palmer Quarterly, 45, 370391. doi:10.1353/mpq.2008.0013Google Scholar
Mason, W. A., & Mendoza, S. P. (1998). Generic aspects of primate attachments: Parents, offspring and mates. Psychoneuroendocrinology, 23, 765778. doi:10.1016/S0306-4530(98)00054-7Google Scholar
McGowan, P. O., Suderman, M., Sasaki, A., Huang, T. C., Hallett, M., Meaney, M. J., & Szyf, M. (2011). Broad epigenetic signature of maternal care in the brain of adult rats. PLOS ONE, 6, e14739. doi:10.1371/journal.pone.0014739Google Scholar
Merlot, E., Couret, D., & Otten, W. (2008). Prenatal stress, fetal imprinting and immunity. Brain, Behavior, and Immunity, 22, 4251. doi:10.1016/j.bbi.2007.05.007Google Scholar
Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., … Cazaubiel, J. M. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British Journal of Nutrition, 105, 755764. doi:10.1017/S0007114510004319Google Scholar
Meyer-Lindenberg, A., Kolachana, B., Gold, B., Olsh, A., Nicodemus, K. K., Mattay, V., … Weinberger, D. R. (2009). Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Molecular Psychiatry, 14, 968975. doi:10.1038/mp.2008.54Google Scholar
Miyagawa, K., Tsuji, M., Fujimori, K., Saito, Y., & Takeda, H. (2011). Prenatal stress induces anxiety-like behavior together with the disruption of central serotonin neurons in mice. Neuroscience Research, 70, 111117.Google Scholar
Moore, S. R., & Depue, R. A. (2016). Neurobehavioral foundation of environmental reactivity. Psychological Bulletin, 142, 107. doi:10.1037/bul0000028Google Scholar
Mueller, B. R., & Bale, T. L. (2008). Sex-specific programming of offspring emotionality after stress early in pregnancy. Journal of Neuroscience, 28, 90559065.Google Scholar
NICHD Early Child Care Research Network. (2005). Child care and child development: Results of the NICHD Study of Early Child Care and Youth Development. New York: Guilford Press.Google Scholar
Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3, 97106. doi:10.4161/epi.3.2.6034Google Scholar
Obradović, J., Bush, N. R., & Boyce, W. T. (2011). The interactive effect of marital conflict and stress reactivity on externalizing and internalizing symptoms: The role of laboratory stressors. Development and Psychopathology, 23, 101114. doi:10.1017/s0954579410000672Google Scholar
Obradović, J., Bush, N. R., Stamperdahl, J., Adler, N. E., & Boyce, W. T. (2010). Biological sensitivity to context: The interactive effects of stress reactivity and family adversity on socioemotional behavior and school readiness. Child Development, 81, 270289. doi:10.1111/j.1467-8624.2009.01394.xGoogle Scholar
Obradović, J., Portilla, X. A., & Ballard, P. J. (2016). Biological sensitivity to family income: Differential effects on early executive functioning. Child Development, 87, 374384. doi:10.1111/cdev.12475Google Scholar
O'Connor, T. G., Heron, J., Golding, J., Beveridge, M., & Glover, V. (2002). Maternal antenatal anxiety and children's behavioural/emotional problems at 4 years. British Journal of Psychiatry, 180, 502508. doi:10.1192/bjp.180.6.502Google Scholar
O'Connor, T. G., Heron, J., Golding, J., & Glover, V. (2003). Maternal antenatal anxiety and behavioural/emotional problems in children: A test of a programming hypothesis. Journal of Child Psychology and Psychiatry, 44, 10251036. doi:10.1111/1469-7610.00187Google Scholar
O'Donnell, K. J., Jensen, A. B., Freeman, L., Khalife, N., O'Connor, T. G., & Glover, V. (2012). Maternal prenatal anxiety and downregulation of placental 11β-HSD2. Psychoneuroendocrinology, 37, 818826. doi:10.1016/j.psyneuen.2011.09.014Google Scholar
Olofsdotter, S., Åslund, C., Furmark, T., Comasco, E., & Nilsson, K. W. (2017). Differential susceptibility effects of oxytocin gene (OXT) polymorphisms and perceived parenting on social anxiety among adolescents. Development and Psychopathology. Advance online publication. doi:10.1017/S0954579417000967Google Scholar
Pärtty, A., Kalliomäki, M., Endo, A., Salminen, S., & Isolauri, E. (2012). Compositional development of Bifidobacterium and Lactobacillus microbiota is linked with crying and fussing in early infancy. PLOS ONE, 7, e32495. doi:10.1371/journal.pone.0032495Google Scholar
Peña, C. J., Monk, C., & Champagne, F. A. (2012). Epigenetic effects of prenatal stress on 11β-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLOS ONE, 7, e39791. doi:10.1371/journal.pone.0039791Google Scholar
Penders, J., Thijs, C., Vink, C., Stelma, F. F., Snijders, B., Kummeling, I., … Stobberingh, E. E. (2006). Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics, 118, 511521.Google Scholar
Perkeybile, A. M., Griffin, L. L., & Bales, K. L. (2013). Natural variation in early parental care correlates with social behaviors in adolescent prairie voles (Microtus ochrogaster). Frontiers in Behavioral Neuroscience, 7, 21. doi:10.3389/fnbeh.2013.00021Google Scholar
Pitzer, M., Jennen-Steinmetz, C., Esser, G., Schmidt, M. H., & Laucht, M. (2011). Differential susceptibility to environmental influences: The role of early temperament and parenting in the development of externalizing problems. Comprehensive Psychiatry, 52, 650658. doi:10.1016/j.comppsych.2010.10.017Google Scholar
Pluess, M., & Belsky, J. (2011). Prenatal programming of postnatal plasticity. Development and Psychopathology, 23, 2938. doi:10.1017/s0954579410000623Google Scholar
Pluess, M., & Belsky, J. (2013). Vantage sensitivity: Individual differences in response to positive experiences. Psychological Bulletin, 139, 901. doi:10.1037/a0030196Google Scholar
Pluess, M., Velders, F. P., Belsky, J., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Jaddoe, V. W., … Tiemeier, H. (2011). Serotonin transporter polymorphism moderates effects of prenatal maternal anxiety on infant negative emotionality. Biological Psychiatry, 69, 520525. doi:10.1016/j.biopsych.2010.10.006Google Scholar
Poehlmann, J., Hane, A., Burnson, C., Maleck, S., Hamburger, E., & Shah, P. E. (2012). Preterm infants who are prone to distress: Differential effects of parenting on 36-month behavioral and cognitive outcomes. Journal of Child Psychology and Psychiatry, 53, 10181025. doi:10.1111/j.1469-7610.2012.02564.xGoogle Scholar
Ponder, K. L., Salisbury, A., McGonnigal, B., Laliberte, A., Lester, B., & Padbury, J. F. (2011). Maternal depression and anxiety are associated with altered gene expression in the human placenta without modification by antidepressant use: Implications for fetal programming. Developmental Psychobiology, 53, 711723. doi:10.1002/dev.20549Google Scholar
Poulin, M. J., Holman, E. A., & Buffone, A. (2012). The neurogenetics of nice: Receptor genes for oxytocin and vasopressin interact with threat to predict prosocial behavior. Psychological Science, 23, 446452. doi:10.1177/0956797611428471Google Scholar
Prichard, Z. M., Mackinnon, A. J., Jorm, A. F., & Easteal, S. (2007). AVPR1A and OXTR polymorphisms are associated with sexual and reproductive behavioral phenotypes in humans. Human Mutation, 28, 1150. doi:10.1002/humu.9510Google Scholar
Radtke, K. M., Ruf, M., Gunter, H. M., Dohrmann, K., Schauer, M., Meyer, A., & Elbert, T. (2011). Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Translational Psychiatry, 1, e21. doi:10.1038/tp.2011.21Google Scholar
Räikkönen, K., Pesonen, A. K., O'reilly, J. R., Tuovinen, S., Lahti, M., Kajantie, E., … Reynolds, R. M. (2015). Maternal depressive symptoms during pregnancy, placental expression of genes regulating glucocorticoid and serotonin function and infant regulatory behaviors. Psychological Medicine, 45, 32173226 doi:10.1017/S003329171500121X.Google Scholar
Raver, C. C., Blair, C., & Willoughby, M. (2012). Poverty as a predictor of 4-year-olds’ executive function: New perspectives on models of differential susceptibility. Developmental Psychology, 49, 292. doi:10.1037/a0028343Google Scholar
Reynaert, M. L., Marrocco, J., Mairesse, J., Lionetto, L., Simmaco, M., Deruyter, L., … Morley-Fletcher, S. (2016). Hedonic sensitivity to natural rewards is affected by prenatal stress in a sex-dependent manner. Addiction Biology, 21, 10721085. doi:10.1111/adb.12270Google Scholar
Rice, F., Harold, G. T., Boivin, J., Hay, D. F., van Den Bree, M., & Thapar, A. (2009). Disentangling prenatal and inherited influences in humans with an experimental design. Proceedings of the National Academy of Sciences, 106, 24642467.Google Scholar
Rice, F., Harold, G. T., Boivin, J., van den Bree, M., Hay, D. F., & Thapar, A. (2010). The links between prenatal stress and offspring development and psychopathology: Disentangling environmental and inherited influences. Psychological Medicine, 40, 335345. doi:10.1017/S0033291709005911Google Scholar
Rioux, C., Castellanos-Ryan, N., Parent, S., Vitaro, F., Tremblay, R. E., & Séguin, J. R. (2016). Differential susceptibility to environmental influences: Interactions between child temperament and parenting in adolescent alcohol use. Development and Psychopathology, 28, 265275. doi:10.1019/S0954579415000437Google Scholar
Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24, 389409. doi:10.1017/S0954579412000065Google Scholar
Rothbart, M. K., & Bates, J. E. (2006). Temperament. In Damon, W., Lerner, R., & Eisenberg, N. (Eds.), Handbook of child psychology: Vol. 3. Social, emotional, and personality development (6th ed., pp. 99166). New York: Wiley.Google Scholar
Rubin, D. M., O'Reilly, A. L., Luan, X., & Localio, A. R. (2007). The impact of placement stability on behavioral well-being for children in foster care. Pediatrics, 119, 336344.Google Scholar
Saxbe, D. E., Margolin, G., Spies Shapiro, L. A., & Baucom, B. R. (2012). Does dampened physiological reactivity protect youth in aggressive family environments? Child Development, 83, 821830. doi:10.1111/j.1467-8624.2012.01752.xGoogle Scholar
Seckl, J. R., & Holmes, M. C. (2007). Mechanisms of disease: Glucocorticoids, their placental metabolism and fetal “programming” of adult pathophysiology. Nature Clinical Practice Endocrinology & Metabolism, 3, 479488. doi:10.1038/ncpendmet0515Google Scholar
Shapiro, G. D., Fraser, W. D., Frasch, M. G., & Séguin, J. R. (2013). Psychosocial stress in pregnancy and preterm birth: Associations and mechanisms. Journal of Perinatal Medicine, 41, 631645. doi:10.1515/jpm-2012-0295Google Scholar
Sharp, H., Hill, J., Hellier, J., & Pickles, A. (2015). Maternal antenatal anxiety, postnatal stroking and emotional problems in children: Outcomes predicted from pre- and postnatal programming hypotheses. Psychological Medicine, 45, 269283. doi:10.1017/S0033291714001342Google Scholar
Sherwin, E., Rea, K., Dinan, T. G., & Cryan, J. F. (2016). A gut (microbiome) feeling about the brain. Current Opinion in Gastroenterology, 32, 96102. doi:10.1097/MOG.0000000000000244Google Scholar
Simcock, G., Elgbeili, G., Laplante, D. P., Kildea, S., Cobham, V., Stapleton, H., … King, S. (2017). The effects of prenatal maternal stress on early temperament: The 2011 Queensland Flood Study. Journal of Developmental & Behavioral Pediatrics, 38, 310321. doi:10.1097/DBP.0000000000000444Google Scholar
Slagt, M., Dubas, J. S., Deković, M., & van Aken, M. A. (2016). Differences in sensitivity to parenting depending on child temperament: A meta-analysis. Psychological Bulletin, 142, 10681110. doi:10.1037/bul0000061Google Scholar
St.-Pierre, J., Laurent, L., King, S., & Vaillancourt, C. (2016). Effects of prenatal maternal stress on serotonin and fetal development. Placenta, 48, S66S71. doi:10.1016/j.placenta.2015.11.013Google Scholar
Swenson, R. R., Beckwith, B. E., Lamberty, K. J., Krebs, S. J., & Tinius, T. P. (1990). Prenatal exposure to AVP or caffeine but not oxytocin alters learning in female rats. Peptides, 11, 927932. doi:10.1016/0196-9781(90)90011-sGoogle Scholar
Tabak, B. A., Meyer, M. L., Castle, E., Dutcher, J. M., Irwin, M. R., Han, J. H., … Eisenberger, N. I. (2015). Vasopressin, but not oxytocin, increases empathic concern among individuals who received higher levels of paternal warmth: A randomized controlled trial. Psychoneuroendocrinology, 51, 253261. doi:10.1016/j.psyneuen.2014.10.006Google Scholar
Takahashi, L. K., & Kalin, N. H. (1991). Early developmental and temporal characteristics of stress-induced secretion of pituitary-adrenal hormones in prenatally stressed rat pups. Brain Research, 558, 7578. doi:10.1016/0006-8993(91)90715-8Google Scholar
Tribollet, E., Goumaz, M., Raggenbass, M., Dubois-Dauphin, M., & Dreifuss, J. J. (1991). Early appearance and transient expression of vasopressin receptors in the brain of rat fetus and infant. An autoradiographical and electrophysiological study. Developmental Brain Research, 58, 1324. doi:10.1016/0165-3806(91)90232-8Google Scholar
Unternaehrer, E., Bolten, M., Nast, I., Staehli, S., Meyer, A. H., Dempster, E., … Meinlschmidt, G. (2016). Maternal adversities during pregnancy and cord blood oxytocin receptor (OXTR) DNA methylation. Social Cognitive and Affective Neuroscience, 11, 14601470. doi:10.1093/scan/nsw051Google Scholar
van den Berg, H., & Bus, A. G. (2014). Beneficial effects of BookStart in temperamentally highly reactive infants. Learning and Individual Differences, 36, 6975. doi:10.1016/j.lindif.2014.10.008Google Scholar
van den Bergh, B. R., Mulder, E. J., Mennes, M., & Glover, V. (2005). Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: Links and possible mechanisms. A review. Neuroscience and Biobehavioral Reviews, 29, 237258. doi:10.1016/j.neubiorev.2004.10.007Google Scholar
van den Bergh, B. R., van Calster, B., Smits, T., van Huffel, S., & Lagae, L. (2008). Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence: A prospective study on the fetal origins of depressed mood. Neuropsychopharmacology, 33, 536545. doi:10.1038/sj.npp.1301450Google Scholar
van den Hove, D. L. A., Lauder, J. M., Scheepens, A., Prickaerts, J. H. H. J., Blanco, C. E., & Steinbusch, H. W. M. (2006). Prenatal stress in the rat alters 5-HT 1A receptor binding in the ventral hippocampus. Brain Research, 1090, 2934. doi:10.1016/j.brainres.2006.03.057Google Scholar
van de Weil, N., van Goozen, S. H., Matthys, W., Snoek, H., & van Engeland, H. (2004). Cortisol and treatment effect in children with disruptive behavior disorders: A preliminary study. Journal of the American Academy of Child & Adolescent Psychiatry, 43, 10111018. doi:10.1097/01.chi.0000126976.56955.43Google Scholar
van IJzendoorn, M. H., Belsky, J., & Bakermans-Kranenburg, M. J. (2012). Serotonin transporter genotype 5HTTLPR as a marker of differential susceptibility? A meta-analysis of child and adolescent gene-by-environment studies. Translational Psychiatry, 2, e147. doi:10.1038/tp.2012.73Google Scholar
van Waes, V., Darnaudery, M., Marrocco, J., Gruber, S. H., Talavera, E., Mairesse, J., … Maccari, S. (2011). Impact of early life stress on alcohol consumption and on the short- and long-term responses to alcohol in adolescent female rats. Behavioural Brain Research, 221, 4349. doi:10.1016/j.bbr.2011.02.033Google Scholar
Wadhwa, P. D., Glynn, L., Hobel, C. J., Garite, T. J., Porto, M., Chicz-DeMet, A., … Sandman, C. A. (2002). Behavioral perinatology: Biobehavioral processes in human fetal development. Regulatory Peptides, 108, 149157. doi:10.1016/S0167-0115(02)00102-7Google Scholar
Walum, H., Westberg, L., Henningsson, S., Neiderhiser, J. M., Reiss, D., Igl, W., … Lichtenstein, P. (2008). Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proceedings of the National Academy of Sciences, 105, 1415314156. doi:10.1073/pnas.0803081105Google Scholar
Watson, E. D., & Cross, J. C. (2005). Development of structures and transport functions in the mouse placenta. Physiology, 20, 180193. doi:10.1152/physiol.00001.2005Google Scholar
Whitaker-Azmitia, P. M., Druse, M., Walker, P., & Lauder, J. M. (1996). Serotonin as a developmental signal. Behavioural Brain Research, 73, 1929. doi:10.1016/0166-4328(96)00071-XGoogle Scholar
Wigger, A., Sánchez, M. M., Mathys, K. C., Ebner, K., Frank, E., Liu, D., … Landgraf, R. (2004). Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: Critical role of vasopressin. Neuropsychopharmacology, 29, 114. doi:10.1038/sj.npp.1300290Google Scholar
Wroble-Biglan, M. C., Dietz, L. J., & Pienkosky, T. V. (2009). Prediction of infant temperament from catecholamine and self-report measures of maternal stress during pregnancy. Journal of Reproductive and Infant Psychology, 27, 374389.Google Scholar
Yehuda, R., Engel, S. M., Brand, S. R., Seckl, J., Marcus, S. M., & Berkowitz, G. S. (2005). Transgenerational effects of posttraumatic stress disorder in babies of mothers exposed to the World Trade Center attacks during pregnancy. Journal of Clinical Endocrinology and Metabolism, 90, 41154118. doi:10.1210/jc.2005-0550Google Scholar
Zijlmans, M. A., Korpela, K., Riksen-Walraven, J. M., de Vos, W. M., & de Weerth, C. (2015). Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology, 53, 233245. doi:10.1016/j.psyneuen.2015.01.006Google Scholar
Zuckerman, M. (1999). Diathesis-stress models. Washington, DC: American Psychological Association.Google Scholar
Zuena, A. R., Mairesse, J., Casolini, P., Cinque, C., Alemà, G. S., Morley-Fletcher, S., … Nicoletti, F. (2008). Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats. PLOS ONE, 3, e2170. doi:10.1371/journal.pone.0002170Google Scholar