Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T17:29:36.524Z Has data issue: false hasContentIssue false

Relations between recurrent trauma exposure and recent life stress and salivary cortisol among children

Published online by Cambridge University Press:  23 January 2008

Katherine Bevans*
Affiliation:
Children's Hospital of Philadelphia
Arleen Cerbone
Affiliation:
UCB Pharma, Inc.
Stacy Overstreet
Affiliation:
Tulane University
*
Address correspondence and reprint requests to: Katherine Bevans, Children's Hospital of Philadelphia, CHOP North, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104-4399; E-mail: bevans@email.chop.edu.

Abstract

The present study evaluated the independent and cumulative effects of recent life stress, previous trauma, and recent trauma exposure on salivary cortisol levels among school-aged children. Sixty-eight children (mean age = 10.7 years) reported their exposure to life stressors and traumatic events in the 12 months preceding the study. Children and their caregivers reported frequency of exposure to trauma earlier in life. Exposure to life stress within the past 12 months was related to higher afternoon cortisol levels. Exposure to high levels of recent trauma in combination with frequent exposure to trauma earlier in life was related to both lower morning cortisol levels and higher afternoon cortisol levels. Results suggest that frequency, duration, and severity of exposure to stress and trauma played key roles in the prediction of basal cortisol levels in a community sample of urban youth.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We thank the Robert E. Flowerree fund and the Georges Lurcy Fund for Faculty Research for their research support.

References

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Thousand Oaks, CA: Sage.Google Scholar
Arnaldi, G., Mancini, T., Polenta, B., & Boscaro, M. (2004). Cardiovascular risk in Cushing's syndrome. Pituitary, 7, 253256.CrossRefGoogle ScholarPubMed
Ashman, S. B., Dawson, G., Panagiotides, H., Yamada, E., & Wilkinson, C. W. (2002). Stress hormone levels of children of depressed mothers. Development and Psychopathology, 14, 333349.CrossRefGoogle ScholarPubMed
Brand, A. H., & Johnson, J. H. (1982). Note on reliability of Life Events Checklist. Psychological Reports, 503, 1274.CrossRefGoogle Scholar
Bremner, J. D., & Vermetten, E. (2001). Stress and development: Behavioral and biological consequences. Development and Psychopathology, 13, 473489.CrossRefGoogle Scholar
Brotman, D. J., Girod, J. P., Garcia, M. J., Patel, J. V., Gupta, M., Posch, A., et al. (2005). Effects of short-term glucocorticoids on cardiovascular biomarkers. Journal of Clinical Endocrinology and Metabolism, 90, 32023208.CrossRefGoogle ScholarPubMed
Carlson, M., Dragomir, C., Earls, F., Farrell, M., Macovei, O., Nystrom, P., et al. (1995a). Cortisol regulation in home-reared and institutionalized Romanian children. Society of Neuroscience Abstracts, 218, 12.Google Scholar
Carlson, M., Dragomir, C., Earls, F., Farrell, M., Macovei, O., Nystrom, P., et al. (1995b). Effects of social deprivation on cortisol regulation in institutionalized Romanian infants. Annals of the New York Academy of Sciences, 807, 419428.CrossRefGoogle Scholar
Carlson, M., & Earls, F. (1997). Psychological and neuroendocrinological sequelae of early social deprivation in institutionalized children in Romania. Annals of the New York Academy of Sciences, 807, 419428.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F.A. (2001). Diverse patterns of neuroendocrine activity in maltreated children. Development and Psychopathology, 13, 677693.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Walker, E. F. (2001). Editorial: Stress and development: Biological and psychological consequences. Development and Psychopathology, 13, 413418.CrossRefGoogle Scholar
Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences. Mahwah, NJ: Erlbaum.Google Scholar
Crofford, L. J., Pillemer, S. R., & Kalogeras, K. T. (1994). Hypothalamic–pituitary–adrenal axis perturbations in patients with fibromyalgia. Arthritis and Rheumatism, 37, 15831592.CrossRefGoogle ScholarPubMed
DeBellis, M. D. (2001). Developmental traumatology: The psychobiological development of maltreated children and its implications for research, treatment, and policy. Development and Psychopathology, 13, 539564.CrossRefGoogle Scholar
DeBellis, M. D., Baum, A. S., Birmaher, B., Keshavan, M. S., Eccard, C. H., Boring, A. M., et al. (1999). Developmental traumatology, Part I: Biological stress systems. Biological Psychiatry, 9, 12591270.CrossRefGoogle Scholar
Dienstbier, R. (1989). Arousal and physiological toughness: Implications for mental and physical health. Psychological Review, 96, 84100.CrossRefGoogle ScholarPubMed
DuBois, D. L., Felner, R. D., Brand, S., Adan, A. M., & Evans, E. G. (1992). A prospective study of life stress, social support, and adaptation in early adolescence. Child Development, 63, 542557.CrossRefGoogle ScholarPubMed
Essex, M. J., Klein, M. H., Cho, E., & Kalin, N. H. (2002). Maternal stress beginning in infancy may sensitize children to later stress exposure: Effects on cortisol and behavior. Biological Psychiatry, 52, 776784.CrossRefGoogle ScholarPubMed
Field, T., Healy, B., Goldstein, S., Perry, S., Bendall, D., Schanberg, S., et al. (1988). Infants of depressed mothers show “depressed” behavior even with non-depressed adults. Child Development, 59, 15691579.CrossRefGoogle Scholar
Finsterward, J., Selig, M. A., Schieche, M., Wurmser, H., & Papousek, M. (2000, July). Individual differences in self-regulation in excessively crying infants: A microanalytic approach. Paper presented at the International Conference of Infant Studies, Brighton, England.Google Scholar
Goenjian, A. K., Yehuda, R., Pynoos, R. S., Steinberg, A. M., Tashjian, M., Yang, R. K., et al. (1996). Basal cortisol, dexamethasone suppression of cortisol and MHPG in adolescents after the 1988 earthquake in Armenia. American Journal of Psychiatry, 157, 929934.Google Scholar
Griep, E. N., Boersma, J. W., & deKloet, E. R. (1993). Altered reactivity of the hypothalamic–pituitary–adrenal axis in the primary fibromyalgia syndrome. Journal of Rheumatology, 20, 469474.Google ScholarPubMed
Guechot, J., Lepine, J. P., Cohen, C., Fiet, J., Lemperiere, T., & Dreaux, C. (1987). Simple laboratory test of neuroendocrine disturbance in depression: 11 p.m. saliva cortisol. Neuropsychobiology, 18, 14.CrossRefGoogle ScholarPubMed
Gully, S. M. (1994). Repeated measures regression analyses: A clarification with illustrative examples. Nashville, TN: Society for Industrial and Organizational Psychology.Google Scholar
Gunnar, M. R., Morison, S. J., Chisholm, K., & Schuder, M. (2001). Salivary cortisol levels in children adopted from Romanian orphanages. Development and Psychopathology, 13, 611628.CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515538.CrossRefGoogle Scholar
Hart, J., Gunnar, M., & Cicchetti, D. (1996). Altered neuroendocrine activity in maltreated children related to depression. Development and Psychopathology, 8, 201214.CrossRefGoogle Scholar
Heim, C., Ehlert, U., Hanker, J. P., & Hellhammer, D. H. (1998). Abuse-related posttraumatic stress disorder and alterations of the hypothalamic–pituitary–adrenal axis in women with chronic pelvic pain. Psychosomatic Medicine, 60, 309318.CrossRefGoogle ScholarPubMed
Heim, C., Ehlert, U., & Hellhammer, D.H. (2000). The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendrocrinology, 2, 135.CrossRefGoogle Scholar
Hellhammer, D. H., & Wade, S. (1993). Endocrine correlates of stress vulnerability. Psychotherapy and Psychosomatics, 60, 817.CrossRefGoogle ScholarPubMed
Hessl, D., Dawson, G., Frey, K., Panagiotides, H., Self, H., Yamada, E., et al. (1998). A longitudinal study of children of depressed mothers: Psychobiological findings related to stress. In Hann, D. M., Huffman, L. C., Lederhendler, K. K., & Minecae, D. (Eds.), Advancing research on developmental plasticity: Integrating the behavioral sciences and the neurosciences of mental health (pp. 256265). Bethesda, MD: National Institutes of Mental Health.Google Scholar
Hollenbeck, J. R., Ilgen, D. R., & Sego, D. J. (1994). Repeated measures regression and mediational tests: Enhancing the power of leadership research. Leadership Quarterly, 5, 323.CrossRefGoogle Scholar
Houchyar, H., Cooper, Z. D., & Woods, J. H. (2001). Paradoxical effects of chronic morphine treatment on the temperature and pituitary–adrenal responses to acute restraint stress: A chronic stress paradigm. Journal of Neuroendocrinology, 13, 862874.Google Scholar
Johnson, J. H., & McCutcheon, S. (1980). Assessing life stress in older children and adolescents: Preliminary findings with the Life Events Checklist. In Sarason, I. G. & Spielberger, C. D. (Eds.), Stress and anxiety (pp. 111125). Washington, DC: Hemisphere.Google Scholar
Kaufman, J. (1991). Depressive disorders in maltreated children. Journal of the American Academy of Child & Adolescent Psychiatry, 30, 257265.CrossRefGoogle ScholarPubMed
Kiess, W., Meidert, A., Dressendorfer, R. A., Scheiver, K., Kessler, U., & Koing, A. (1995). Salivary cortisol levels throughout childhood and adolescence: Relation with age, pubertal stage, and weight. Pediatric Research, 37, 502506.CrossRefGoogle ScholarPubMed
Kruger, U., & Spiecker, H. (1994). Die Diagnostik der Nebennierenrindeninsuffizienz bei steriodpflichtigem Asthma bronchiale: Der CRH-Test im Vergleich zu Kortisol Tagesprofil im Serum und Kortisol im 24-h-Urin. Pneumologie, 48, 789793.Google Scholar
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2000). Child's stress hormone levels correlate with mother's socioeconomic status and depressive state. Biological Psychiatry, 48, 976980.CrossRefGoogle ScholarPubMed
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2001). Can poverty get under your skin? Basal cortisol levels and cognitive function in children from low and high socioeconomic status. Development and Psychopathology, 13, 653676.CrossRefGoogle ScholarPubMed
Lupien, S. J., & McEwen, B. S. (1997). The acute effects of corticosterone on cognition: Integration of animal and human model studies. Brain Research Reviews, 24, 127.CrossRefGoogle Scholar
Marsland, K. W., Epel, E. S., Brown, M. R., Anderson, G. M., Kogen, N., Little, C. B., et al. (2000, July). Infant attachment predicts stress-induced cortisol reactivity in preschoolers. Paper presented at the International Conference of Infant Studies, Brighton, England.Google Scholar
Mason, J. W., Brady, J. V., Tolliver, G. A. (1968). Plasma and urinary 17-hydroxycorticosteriod responses to 72-h avoidance sessions in the monkey. Psychosomatic Medicine, 30, 608630.CrossRefGoogle Scholar
Mason, J. W., Giller, E. L., Kosten, T. R., Ostroff, R. P., & Podd, L. (1986). Urinary free-cortisol levels in post-traumatic stress disorder patients. Journal of Nervous and Mental Disorders, 174, 145159.CrossRefGoogle Scholar
McEwen, B. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171179.CrossRefGoogle ScholarPubMed
McEwen, B., & Stellar, E. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153, 20932101.CrossRefGoogle ScholarPubMed
Meaney, M. J., Aitken, D. H., Sharma, S., & Sarrieau, A. (1989). Neonatal handling alters adrenocortical negative feedback sensitivity and hippocampal Type II glucocorticoid receptor binding in the rat. Neuroendocrinology, 50, 597604.CrossRefGoogle ScholarPubMed
Natelson, B. H., Ottenweller, J. E., Cook, J. A., Pitnam, D., McCarthy, R., & Tapp, W. N. (1988). Effect of stressor intensity on habituation of the adrenocortical stress response. Physiology & Behavior, 43, 4146.CrossRefGoogle ScholarPubMed
Putnam, F. W., Trickett, P. K., Helmers, K., Dorn, L., & Everett, B. (1991). Cortisol abnormalities in sexually abused girls, 144th Annual Meeting Program (p. 107). Washington, DC: American Psychiatric Press.Google Scholar
Pynoos, R. S., Rodriguez, N., Steinberg, A., Stuber, M., & Frederick, C. (1998). UCLA PTSD Index for DSM-IV. Los Angeles: UCLA Trauma Psychiatry Service.Google Scholar
Resnick, H. S., Yehuda, R., Pitman, R. K., & Foy, D. W. (1995). Effects of previous trauma on acute plasma cortisol level following rape. American Journal of Psychiatry, 152, 16751677.Google ScholarPubMed
Rivier, C., & Vale, W. (1987). Diminished responsiveness of the hypothalamic pituitary adrenal axis of the rat during exposure to prolonged stress: A pituitary mediated-mechanism. Endocrinology, 121, 13201328.CrossRefGoogle Scholar
Ruscher, J. B., & Kaplan, S. A. (2002). Cracks in the looking glass: Attenuating the effects of self-perceptions on metaperceptions. Columbus, OH: Society of Experimental Social Psychology.Google Scholar
Sanchez, M. M., Noble, P. M., Lyon, C. K., Plotsky, P. M., Davis, M., Nemeroff, C. B., et al. (2005). Alterations in diurnal cortisol rhythm and acoustic startle response in nonhuman primates with adverse rearing. Biological Psychiatry, 57, 373381.CrossRefGoogle ScholarPubMed
Sapolsky, R. M. (1994). Why zebras don't get ulcers: An updated guide to stress, stress-related diseases, and coping. New York: W. H. Freeman.Google Scholar
Sapolsky, R. M. (2004). Is impaired neurogenesis relevant to the affective symptoms of depression? Biological Psychiatry, 56, 137139.CrossRefGoogle Scholar
Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1984). Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proceedings of the National Academy of Sciences USA, 81, 61746177.CrossRefGoogle ScholarPubMed
Selye, H. (1936). A syndrome produced by diverse noxious agents. Nature, 138, 3236.CrossRefGoogle Scholar
Spangler, G., & Grossman, K. E. (1993). Biobehavioral organization in securely and insecurely attached infants. Child Development, 64, 14391450.CrossRefGoogle ScholarPubMed
Walker, E. F., Walder, D. J., & Reynolds, F. (2001). Developmental changes in cortisol secretion in normal and at-risk youth. Development and Psychopathology, 13, 721732.CrossRefGoogle ScholarPubMed
Yehuda, R., Boisoneau, D., Lowy, M. T., & Giller, E. L. (1995). Dose–response changes in plasma cortisol and lymphocyte glucocorticoid receptors following dexamethasone administration in combat veterans with and without posttraumatic stress disorder. Archives of General Psychiatry, 52, 583593.CrossRefGoogle ScholarPubMed
Yehuda, R., Boisoneau, D., Mason, J., & Giller, E. L. (1993). Hypothalamic pituitary adrenal dysfunction in posttraumatic stress disorder. Biological Psychiatry, 30, 10311048.CrossRefGoogle Scholar
Yehuda, R., Giller, E. L., Southwick, S. M., Lowy, M. T., & Mason, J. W. (1991). Hypothalamic–pituitary–adrenal dysfunction in posttraumatic stress disorder. Biological Psychiatry, 30, 10311048.CrossRefGoogle ScholarPubMed
Yehuda, R., Levengood, R. A., Schmeidler, J., Wilson, S., Guo, L. S., & Berber, D. (1996). Increased pituitary activation following metyrapone administration in post-traumatic stress disorder. Psychoneuroendocrinology, 21, 116.CrossRefGoogle ScholarPubMed
Yehuda, R., Resick, H., Kahana, B., & Giller, E. L. (1993). Persistent hormonal alterations following extreme stress in humans: Adaptive or maladaptive? Psychosomatic Medicine, 55, 287297.CrossRefGoogle ScholarPubMed
Yehuda, R., Southwick, S. M., Nussbaum, G., Wahby, V., Giller, E. L., & Mason, J.W. (1990). Low urinary cortisol secretion in patients with post-traumatic stress disdorder. Journal of Nervous and Mental Disorders, 178, 366369.CrossRefGoogle Scholar