Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T11:11:51.291Z Has data issue: false hasContentIssue false

Posterior structural brain volumes differ in maltreated youth with and without chronic posttraumatic stress disorder

Published online by Cambridge University Press:  04 November 2015

Michael D. De Bellis*
Affiliation:
Duke University School of Medicine
Stephen R. Hooper
Affiliation:
Duke University School of Medicine University of North Carolina School of Medicine
Steven D. Chen
Affiliation:
Duke University School of Medicine
James M. Provenzale
Affiliation:
Duke University School of Medicine
Brian D. Boyd
Affiliation:
Duke University School of Medicine
Christopher E. Glessner
Affiliation:
Duke University School of Medicine
James R. MacFall
Affiliation:
Duke University School of Medicine
Martha E. Payne
Affiliation:
Duke University School of Medicine
Robert Rybczynski
Affiliation:
Duke University School of Medicine
Donald P. Woolley
Affiliation:
Duke University School of Medicine
*
Address correspondence and reprint requests to: Michael D. De Bellis, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box 104360, Durham, NC 27710; E-mail: michael.debellis@duke.edu.

Abstract

Magnetic resonance imaging studies of maltreated children with posttraumatic stress disorder (PTSD) suggest that maltreatment-related PTSD is associated with adverse brain development. Maltreated youth resilient to chronic PTSD were not previously investigated and may elucidate neuromechanisms of the stress diathesis that leads to resilience to chronic PTSD. In this cross-sectional study, anatomical volumetric and corpus callosum diffusion tensor imaging measures were examined using magnetic resonance imaging in maltreated youth with chronic PTSD (N = 38), without PTSD (N = 35), and nonmaltreated participants (n = 59). Groups were sociodemographically similar. Participants underwent assessments for strict inclusion/exclusion criteria and psychopathology. Maltreated youth with PTSD were psychobiologically different from maltreated youth without PTSD and nonmaltreated controls. Maltreated youth with PTSD had smaller posterior cerebral and cerebellar gray matter volumes than did maltreated youth without PTSD and nonmaltreated participants. Cerebral and cerebellar gray matter volumes inversely correlated with PTSD symptoms. Posterior corpus callosum microstructure in pediatric maltreatment-related PTSD differed compared to maltreated youth without PTSD and controls. The group differences remained significant when controlling for psychopathology, numbers of Axis I disorders, and trauma load. Alterations of these posterior brain structures may result from a shared trauma-related mechanism or an inherent vulnerability that mediates the pathway from chronic PTSD to comorbidity.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonzo, A. A. (2000). The experience of chronic illness and post-traumatic stress disorder: The consequences of cumulative adversity. Social Science & Medicine, 50, 14751484.CrossRefGoogle ScholarPubMed
American Academy of Child and Adolescent Psychiatry. (2010). Practice parameter for the assessment and treatment of children and adolescents with posttraumatic stress disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 414430.Google Scholar
Asato, M. R., Terwilliger, R., Woo, J., & Luna, B. (2010). White matter development in adolescence: A DTI study. Cerebral Cortex, 20, 21222131.CrossRefGoogle ScholarPubMed
Baldaçara, L., Jackowski, A. P., Schoedl, A., Pupo, M., Andreoli, S. B., Mello, M. F., et al. (2011). Reduced cerebellar left hemisphere and vermal volume in adults with PTSD from a community sample. Journal of Psychiatric Research, 45, 16271633.CrossRefGoogle ScholarPubMed
Bauer, P. M., Hanson, J. L., Pierson, R. K., Davidson, R. J., & Pollak, S. D. (2009). Cerebellar volume and cognitive functioning in children who experienced early deprivation. Biological Psychiatry, 66, 11001106.CrossRefGoogle ScholarPubMed
Bellebaum, C., & Daum, I. (2007). Cerebellar involvement in executive control. Cerebellum, 6, 184192.CrossRefGoogle ScholarPubMed
Besinger, B., Garland, A. F., Litrownik, A. J., & Landsverk, J. A. (1999). Caregiver substance abuse among maltreated children placed in out-of-home care. Child Welfare, 78, 221239.Google ScholarPubMed
Beyer, J. L., Kuchibhatla, M., Payne, M. E., MacFall, J., Cassidy, F., & Krishnan, K. R. R. (2009). Gray and white matter brain volumes in older adults with bipolar disorder. International Journal of Geriatric Psychiatry, 24, 14451452.CrossRefGoogle ScholarPubMed
Bucker, J., Muralidharan, K., Torres, I. J., Su, W., Kozicky, J., Silveira, L. E., et al. (2014). Childhood maltreatment and corpus callosum volume in recently diagnosed patients with bipolar I disorder: Data from the Systematic Treatment Optimization Program for Early Mania (STOP-EM). Journal of Psychiatric Research, 48, 6572.CrossRefGoogle ScholarPubMed
Carrion, V. G., Weems, C. F., Eliez, S., Patwardhan, A., Brown, W., Ray, R. D., et al. (2001). Attenuation of frontal asymmetry in pediatric posttraumatic stress disorder. Biological Psychiatry, 50, 943951.CrossRefGoogle ScholarPubMed
Carrion, V. G., Weems, C. F., Watson, C., Eliez, S., Menon, V., & Reiss, A. L. (2009). Converging evidence for abnormalities of the prefrontal cortex and evaluation of midsagittal structures in pediatric posttraumatic stress disorder: An MRI study. Psychiatry Research: Neuroimaging, 172, 226234.CrossRefGoogle ScholarPubMed
Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129, 564583.CrossRefGoogle ScholarPubMed
Chiang, M.-C., McMahon, K. L., de Zubicaray, G. I., Martin, N. G., Hickie, I., Toga, A. W., et al. (2011). Genetics of white matter development: A DTI study of 705 twins and their siblings aged 12 to 29. NeuroImage, 54, 23082317.CrossRefGoogle ScholarPubMed
Choi, J., Jeong, B., Rohan, M. L., Polcari, A., & Teicher, M. H. (2009). Preliminary evidence for white matter tract abnormalities in young adults exposed to parental verbal abuse. Biological Psychiatry, 65, 227234.CrossRefGoogle ScholarPubMed
Cicchetti, D. (2013). Annual Research Review: Resilient functioning in maltreated children—Past, present, and future perspectives. Journal of Child Psychology and Psychiatry, 54, 402422.CrossRefGoogle ScholarPubMed
Cirulli, F., Francia, N., Berry, A., Aloe, L., Alleva, E., & Suomi, S. J. (2009). Early life stress as a risk factor for mental health: Role of neurotrophins from rodents to non-human primates. Neuroscience & Biobehavioral Reviews, 33, 573585.CrossRefGoogle ScholarPubMed
Cohen, R. A., Grieve, S., Hoth, K. F., Paul, R. H., Sweet, L., Tate, D., et al. (2006). Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei. Biological Psychiatry, 59, 975982.CrossRefGoogle ScholarPubMed
Copeland, W., Keeler, G., Angold, A., & Costello, E. (2007). Traumatic events and posttraumatic stress in childhood. Archives of General Psychiatry, 64, 577584.CrossRefGoogle ScholarPubMed
Crozier, J. C., Wang, L., Huettel, S. A., & De Bellis, M. D. (2014). Neural correlates of cognitive and affective processing in maltreated youth with posttraumatic stress symptoms: Does gender matter? Development and Psychopathology, 26, 491513.CrossRefGoogle ScholarPubMed
Damasio, H. (1995). Human brain anatomy in computerized images. New York: Oxford University Press.Google Scholar
Danese, A., Moffitt, T. E., Harrington, H., Milne, B. J., Polanczyk, G., Pariante, C. M., et al. (2009). Adverse childhood experiences and adult risk factors for age-related disease: Depression, inflammation, and clustering of metabolic risk markers. Archives of Pediatrics and Adolescent Medicine, 163, 11351143.CrossRefGoogle ScholarPubMed
Danese, A., Pariante, C. M., Caspi, A., Taylor, A., & Poulton, R. (2007). Childhood maltreatment predicts adult inflammation in a life-course study. Proceedings of the National Academy of Sciences, 104, 13191324.CrossRefGoogle Scholar
Dannlowski, U., Stuhrmann, A., Beutelmann, V., Zwanzger, P., Lenzen, T., Grotegerd, D., et al. (2012). Limbic scars: Long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biological Psychiatry, 71, 286293.CrossRefGoogle ScholarPubMed
De Bellis, M. D. (2001a). Developmental traumatology: A contributory mechanism for alcohol and substance use disorders. Special Review. Psychoneuroendocrinology, 27, 155170.CrossRefGoogle Scholar
De Bellis, M. D. (2001b). Developmental traumatology: The psychobiological development of maltreated children and its implications for research, treatment, and policy. Development and Psychopathology, 13, 539564.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Hooper, S., Spratt, E. G., & Woolley, D. W. (2009). Neuropsychological findings in childhood neglect and their relationships to pediatric PTSD. Journal of the International Neuropsychological Society, 15, 868878.CrossRefGoogle ScholarPubMed
De Bellis, M. D., & Keshavan, M. S. (2003). Sex differences in brain maturation in maltreatment-related pediatric posttraumatic stress disorder. Neuroscience & Biobehavioral Reviews, 27, 103117.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Keshavan, M. S., Beers, S. R., Hall, J., Frustaci, K., Masalehdan, A., et al. (2001). Sex differences in brain maturation during childhood and adolescence. Cerebral Cortex, 11, 552557.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Keshavan, M., Clark, D. B., Casey, B. J., Giedd, J., Boring, A. M., et al. (1999). A. E. Bennett Research Award. Developmental Traumatology: Part II. Brain Development. Biological Psychiatry, 45, 12711284.CrossRefGoogle Scholar
De Bellis, M. D., Keshavan, M., Shifflett, H., Iyengar, S., Beers, S. R., Hall, J., et al. (2002). Brain structures in pediatric maltreatment-related posttraumatic stress disorder: A sociodemographically matched study. Biological Psychiatry, 52, 10661078.CrossRefGoogle ScholarPubMed
De Bellis, M., & Kuchibhatla, M. (2006). Cerebellar volumes in pediatric maltreatment-related posttraumatic stress disorder. Biological Psychiatry, 60, 697703.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Narasimhan, A., Thatcher, D. L., Keshavan, M. S., Soloff, P., & Clark, D. B. (2005). Prefrontal cortex, thalamus and cerebellar volumes in adolescents and young adults with adolescent onset alcohol use disorders and co-morbid mental disorders Alcoholism: Clinical and Experimental Research, 29, 15901600.CrossRefGoogle Scholar
De Bellis, M. D., Woolley, D. P., & Hooper, S. R. (2013). Neuropsychological findings in pediatric maltreatment: Relationship of PTSD, dissociative symptoms, and abuse/neglect indices to neurocognitive outcomes. Child Maltreatment, 18, 171183.CrossRefGoogle ScholarPubMed
De Bellis, M. D., & Zisk, A. (2014). The biological effects of childhood trauma. Child and Adolescent Psychiatric Clinics of North America: Disaster and Trauma, 23, 185222.CrossRefGoogle ScholarPubMed
Devlin, J. T., Jamison, H. L., Gonnerman, L. M., & Matthews, P. M. (2006). The role of the posterior fusiform gyrus in reading. Journal of Cognitive Neuroscience, 18, 911922.CrossRefGoogle ScholarPubMed
Dougherty, R. F., Koch, V. M., Brewer, A. A., Fischer, B., Modersitzki, J., & Wandell, B. A. (2003). Visual field representations and locations of visual areas V1/2/3 in human visual cortex. Journal of Vision, 3, 586598.CrossRefGoogle ScholarPubMed
Famularo, R., Fenton, T., Augustyn, M., & Zuckerman, B. (1996). Persistence of pediatric post traumatic stress disorder after 2 years. Child Abuse & Neglect, 20, 12451248.CrossRefGoogle ScholarPubMed
Famularo, R., Fenton, T., & Kinscherff, R. (1993). Child maltreatment and the development of post traumatic stress disorder. American Journal of Diseases of Children, 147, 755760.Google Scholar
Felitti, V. J., Anda, R. F., Nordenberg, D., Williamson, D. F., Spitz, A. M., Edwards, V., et al. (1998). Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. American Journal of Preventive Medicine, 14, 245258.CrossRefGoogle ScholarPubMed
Fransson, P. (2006). How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia, 44, 28362845.CrossRefGoogle ScholarPubMed
Giedd, J. N., & Rapoport, J. L. (2010). Structural MRI of pediatric brain development: What have we learned and where are we going? Neuron, 67, 728734.CrossRefGoogle ScholarPubMed
Giuliani, N. R., Calhoun, V. D., Pearlson, G. D., Francis, A., & Buchanan, R. W. (2005). Voxel-based morphometry versus region of interest: A comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophrenia Research, 74, 135147.CrossRefGoogle ScholarPubMed
Hagmann, P., Cammoun, L., Martuzzi, R., Maeder, P., Clarke, S., Thiran, J.-P., et al. (2006). Hand preference and sex shape the architecture of language networks. Human Brain Mapping, 27, 828835.CrossRefGoogle ScholarPubMed
Hanson, J. L., Chung, M. K., Avants, B. B., Shirtcliff, E. A., Gee, J. C., Davidson, R. J., et al. (2010). Early stress is associated with alterations in the orbitofrontal cortex: A tensor based morphometry investigation of brain structure and behavioral risk. Journal of Neuroscience, 30, 74667472.CrossRefGoogle ScholarPubMed
Herrenkohl, T. I., & Herrenkohl, R. C. (2007). Examining the overlap and prediction of multiple forms of child maltreatment, stressors, and socioeconomic status: A longitudinal analysis of youth outcomes. Journal of Family Violence, 22, 553562.CrossRefGoogle Scholar
Huang, H., Zhang, J., Jiang, H., Wakana, S., Poetscher, L., Miller, M. I., et al. (2005). DTI tractography based parcellation of white matter: Application to the mid-sagittal morphology of corpus callosum. NeuroImage, 26, 195205.CrossRefGoogle Scholar
Hussey, J. M., Chang, J. J., & Kotch, J. B. (2006). Child maltreatment in the United States: Prevalence, risk factors, and adolescent health consequences. Pediatrics, 118, 933942.CrossRefGoogle ScholarPubMed
Isabelle, K., Paradis, A.-L., Poline, J.-B., Kosslyn, S. M., & Denis Le Bihan, D. (2000). Transient activity in the human calcarine cortex during visual-mental imagery: An event-related fMRI study. Journal of Cognitive Neuroscience, 12(Suppl. 2), 1523.Google Scholar
Jackowski, A. P., Douglas-Palumberi, H., Jackowski, M., Win, L., Schultz, R. T., Staib, L. W., et al. (2008). Corpus callosum in maltreated children with posttraumatic stress disorder: A diffusion tensor imaging study. Psychiatry Research: Neuroimaging, 162, 256261.CrossRefGoogle ScholarPubMed
Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., et al. (1997). Schedule for Affective Disorders and Schizophrenia for School-Age Children—Present and lifetime version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 980988.CrossRefGoogle ScholarPubMed
Kaufman, J., Jones, B., Stieglitz, E., Vitulano, L., & Mannarino, A. (1994). The use of multiple informants to assess children's maltreatment experiences. Journal of Family Violence, 9, 227248.CrossRefGoogle Scholar
Keding, T. J., & Herringa, R. J. (in press). Abnormal structure of fear circuitry in pediatric post-traumatic stress disorder. Neuropsychopharmacology.Google Scholar
Kelleher, K., Chaffin, M., Hollenberg, J., & Fischer, E. (1994). Alcohol and drug disorders among physically abusive and neglectful parents in a community-based sample. American Journal of Public Health, 84, 15861590.CrossRefGoogle Scholar
Kelly, P. A., Viding, E., Wallace, G. L., Schaer, M., De Brito, S. A., Robustelli, B., et al. (2013). Cortical thickness, surface area, and gyrification abnormalities in children exposed to maltreatment: Neural markers of vulnerability? Biological Psychiatry, 74, 845852.CrossRefGoogle ScholarPubMed
Kilpatrick, D. G., Ruggiero, K. J., Acierno, R., Saunder, B., Resnick, H. S., & Best, C. L. (2003). Violence and risk of PTSD, major depression, substance abuse/dependence, and comorbidity: Results From the National Survey of Adolescents. Journal of Consulting and Clinical Psychology, 71, 692700.CrossRefGoogle ScholarPubMed
Kitayama, N., Brummer, M., Hertz, L., Quinn, S., Kim, Y., & Bremner, J. D. (2007). Morphologic alterations in the corpus callosum in abuse-related posttraumatic stress disorder: A preliminary study. Journal of Nervous and Mental Disease, 195, 10271029.CrossRefGoogle ScholarPubMed
Kitayama, N., Quinn, S., & Bremner, J. D. (2006). Smaller volume of anterior cingulate cortex in abuse-related posttraumatic stress disorder. Journal of Affective Disorders, 90, 171174.CrossRefGoogle ScholarPubMed
Kubicki, M., Shenton, M. E., Salisbury, D. F., Hirayasu, Y., Kasai, S. K., Kikinis, R., et al. (2002). Voxel-based morphometric analysis of gray matter in first episode schizophrenia. NeuroImage, 17, 17111719.CrossRefGoogle ScholarPubMed
Lange, N., Froimowitz, M. P., Bigler, E. D., Lainhart, J. E., & Brain Development Cooperative Group. (2010). Associations between IQ, total and regional brain volumes, and demography in a large normative sample of healthy children and adolescents. Developmental Neuropsychology, 35, 296317.CrossRefGoogle Scholar
Lebel, C., & Beaulieu, C. (2011). Longitudinal development of human brain wiring continues from childhood into adulthood. Journal of Neuroscience, 31, 1093710947.CrossRefGoogle ScholarPubMed
Lebel, C., Caverhill-Godkewitsch, S., & Beaulieu, C. (2010). Age-related regional variations of the corpus callosum identified by diffusion tensor tractography. NeuroImage, 52, 2031.CrossRefGoogle ScholarPubMed
Leslie, L. K., Gordon, J. N., Meneken, L., Premji, K., Michaelmore, K. L., & Ganger, W. (2005). The physical, developmental, and mental health needs of young children in child welfare by initial placement type. Developmental and Behavioral Pediatrics, 26, 177185.CrossRefGoogle ScholarPubMed
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., & Suetens, P. (1997). Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging, 16, 187198.CrossRefGoogle ScholarPubMed
McGloin, J. M., & Widom, C. S. (2001). Resilience among abused and neglected children grown up. Development and Psychopathology, 13, 10211038.CrossRefGoogle ScholarPubMed
McLeer, S. V., Dixon, J. F., Henry, D., Ruggiero, K., Escovitz, K., Niedda, T., et al. (1998). Psychopathology in non-clinically referred sexually abused children. Journal of the American Academy of Child & Adolescent Psychiatry, 37, 13261333.CrossRefGoogle ScholarPubMed
Milad, M. R., & Quirk, G. J. (2012). Fear extinction as a model for translational neuroscience: Ten years of progress. Annual Review Psychology, 62, 129151.CrossRefGoogle Scholar
Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience & Biobehavioral Reviews, 33, 10041023.CrossRefGoogle ScholarPubMed
Perez, C., & Widom, C. S. (1994). Childhood victimization and long-term intellectual and academic outcomes. Child Abuse & Neglect, 18, 617633.CrossRefGoogle ScholarPubMed
Pitman, R. K., Rasmusson, A. M., Koenen, K. C., Shin, L. M., Orr, S. P., Gilbertson, M. W., et al. (2012). Biological studies of post-traumatic stress disorder. Nature Reviews: Neuroscience, 13, 769787.CrossRefGoogle ScholarPubMed
Prochnowa, D., Kossacka, H., Brunheima, S. K., Müllera, K., Wittsackb, H.-J., Markowitschc, H.-J., et al. (2013). Processing of subliminal facial expressions of emotion: A behavioral and fMRI study. Social Neuroscience, 8, 448461. doi:10.1080/17470919.2013.812536 CrossRefGoogle Scholar
Raghavan, R., Zima, B. T., Andersen, R. M., Leibowitz, A. A., Schuster, M. A., & Landsverk, J. (2005). Psychotropic medication use in a national probability sample of children in the child welfare system. Journal of Child and Adolescent Psychopharmacology, 15, 97106.CrossRefGoogle Scholar
Riva, D., & Giorgi, C. (2000). The cerebellum contributes to higher functions during development. Brain, 123, 10511061.CrossRefGoogle ScholarPubMed
Rothman, K. J. (1990). No adjustments are needed for multiple comparisons. Epidemiology, 1, 4346.CrossRefGoogle ScholarPubMed
Sacchetti, B., Scelfo, B., Tempia, F., & Strata, P. (2004). Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron, 42, 973982.CrossRefGoogle ScholarPubMed
Sanchez, M. M., Hearn, E. F., Do, D., Rilling, J. K., & Herndon, J. G. (1998). Differential rearing affects corpus callosum size and cognitive function of rhesus monkeys. Brain Research, 812, 3849.CrossRefGoogle ScholarPubMed
Sandor, S., & Leahy, R. (1997). Surface-based labeling of cortical anatomy using a deformable database. IEEE Transactions on Medical Imaging, 16, 4154.CrossRefGoogle Scholar
Satterthwaite, T. D., Vandekar, S., Wolf, D. H., Ruparel, K., Roalf, D. R., Jackson, C., et al. (2014). Sex differences in the effect of puberty on hippocampal morphology. Journal of the American Academy of Child & Adolescent Psychiatry, 53, 341350.CrossRefGoogle ScholarPubMed
Schoenemann, P. T. (2006). Evolution of the size and functional areas of the human brain. Annual Review of Anthropology, 35, 379406.CrossRefGoogle Scholar
Schutter, D. J. L. G., & van Honk, J. (2005). The cerebellum on the rise in human emotion. Cerebellum, 4, 290294.CrossRefGoogle ScholarPubMed
Sehlmeyer, C., Schöning, S., Zwitserlood, P., Pfleiderer, B., Kircher, T., Arolt, V., et al. (2009). Human fear conditioning and extinction in neuroimaging: A systematic review. PLOS ONE, 4, e5865.CrossRefGoogle ScholarPubMed
Shaffer, D., Gould, M. S., Brasic, J., Ambrosini, P., Fisher, P., Bird, H., et al. (1983). A children's global assessment scale. Archives of General Psychiatry, 40, 12281231.CrossRefGoogle ScholarPubMed
Shalev, I., Moffitt, T. E., Sugden, K., Williams, B., Houts, R. M., Danese, A., et al. (2013). Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: A longitudinal study. Molecular Psychiatry, 18, 576581.CrossRefGoogle ScholarPubMed
Shattuck, D. W., & Leahy, R. M. (2001). Graph based analysis and correction of cortical volume topology. IEEE Transactions on Medical Imaging, 20, 11671177.CrossRefGoogle ScholarPubMed
Shattuck, D. W., Sandor-Leahy, S. R., Schaper, K. A., Rottenberg, D. A., & Leahy, R. (2001). Magnetic resonance image tissue classification using a partial volume model. NeuroImage, 13, 856876.CrossRefGoogle ScholarPubMed
Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., et al. (2006). Intellectual ability and cortical development in children and adolescents. Nature Letters, 440, 676679.CrossRefGoogle ScholarPubMed
Smith, D. K., Johnson, A. B., Pears, K. C., Fisher, P. A., & DeGarmo, D. S. (2007). Child maltreatment and foster care: Unpacking the effects of prenatal and postnatal parental substance use. Child Maltreatment, 12, 150.CrossRefGoogle ScholarPubMed
Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143155.CrossRefGoogle ScholarPubMed
Solomon, S. G., & Rosa, M. G. P. (2014). A simpler primate brain: The visual system of the marmoset monkey. Frontiers in Neura Circuits, 8, 124.CrossRefGoogle ScholarPubMed
Sun, S.-W., Liang, H.-F., Trinkaus, K., Cross, A. H., Armstrong, R. C., & Song, S.-K. (2006). Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magnetic Resonance in Medicine, 55, 302308.CrossRefGoogle ScholarPubMed
Teicher, M. H., Anderson, C. M., & Polcari, A. (2012). Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proceedings of the National Academy of Sciences, 109, E563E572.CrossRefGoogle ScholarPubMed
Teicher, M. H., Dumont, N. L., Ito, Y., Vaituzis, C., Giedd, J. N., & Andersen, S. L. (2004). Childhood neglect is associated with reduced corpus callosum area. Biological Psychiatry, 56, 8085.CrossRefGoogle ScholarPubMed
Thoma, P., Bellebaum, C., Koch, B., Schwarz, M., & Daum, I. (2008). The cerebellum is involved in reward-based reversal learning. Cerebellum, 7, 433443.CrossRefGoogle ScholarPubMed
Thomaes, K., Dorrepaal, E., Draijer, N., de Ruiter, M. B., van Balkom, A. J., Smit, J. H., et al. (2010). Reduced anterior cingulate and orbitofrontal volumes in child abuse-related complex PTSD. Journal of Clinical Psychiatry, 71, 16361644.CrossRefGoogle ScholarPubMed
Tomoda, A., Suzuki, H., Rabi, K., Sheu, Y.-S., Polcari, A., & Teicher, M. H. (2009). Reduced prefrontal cortical gray matter volume in young adults exposed to harsh corporal punishment. NeuroImage, 47, T66T71.CrossRefGoogle ScholarPubMed
Tyrka, A. R., Price, L. H., Kao, H.-T., Porton, B., Marsella, S. A., & Carpenter, L. L. (2010). Childhood Maltreatment and telomere shortening: Preliminary support for an effect of early stress on cellular aging. Biological Psychiatry, 67, 531534.CrossRefGoogle ScholarPubMed
van der Werff, S. J., Pannekoek, J. N., Veer, I. M., van Tol, M. J., Aleman, A., Veltman, D. J., et al. (2013). Resilience to childhood maltreatment is associated with increased resting-state functional connectivity of the salience network with the lingual gyrus. Child Abuse & Neglect, 37, 10211029.CrossRefGoogle ScholarPubMed
van Harmelen, A.-L., van Tol, M.-J., van der Wee, N. J. A., Veltman, D. J., Aleman, A., Spinhoven, P., et al. (2010). Reduced medial prefrontal cortex volume in adults reporting childhood emotional maltreatment. Biological Psychiatry, 68, 832838.CrossRefGoogle ScholarPubMed
Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., & Suetens, P. (2001). Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Transactions on Medical Imaging, 20, 677688.CrossRefGoogle ScholarPubMed
Van Leemput, K., Maes, F., Vandermeulen, D., & Suetens, P. (2003). A unifying framework for partial volume segmentation of brain MR images. IEEE Transactions on Medical Imaging, 22, 105119.CrossRefGoogle ScholarPubMed
Villarreal, G., Hamilton, D. A., Graham, D. P., Driscoll, I., Qualls, C., Petropoulos, H., et al. (2004). Reduced area of the corpus callosum in posttraumatic stress disorder. Psychiatry Research: Neuroimaging, 131, 227235.CrossRefGoogle ScholarPubMed
Wechsler, D. (1991). Wechsler Intelligence Scale for Children (3rd ed.). San Antonio, TX: Psychological Corporation.Google Scholar
Widom, C. S. (1999). Posttraumatic stress disorder in abused and neglected children grown up. American Journal of Psychiatry, 156, 12231229.CrossRefGoogle ScholarPubMed
Yehuda, R., & LeDoux, J. E. (2007). Response variation following trauma: A translational neuroscience approach to understanding PTSD. Neuron, 56, 1932.CrossRefGoogle ScholarPubMed
Yoo, T. S., Ackerman, M. J., Lorensen, W. E., Schroeder, W., Chalana, V., Aylward, S., et al. (2002). Engineering and algorithm design for an image processing API: A technical report on ITK—The Insight Toolkit. In Westwood, J. (Ed.), Proceedings of medicine meets virtual reality (pp. 586592). Amsterdam: IOS Press.Google Scholar
Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., et al. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage, 31, 11161128.CrossRefGoogle ScholarPubMed
Zhang, J., Tan, Q., Yin, H., Zhang, X., Huan, Y., Tang, L., et al. (2011). Decreased gray matter volume in the left hippocampus and bilateral calcarine cortex in coal mine flood disaster survivors with recent onset PTSD. Psychiatry Research: Neuroimaging, 192, 8490.CrossRefGoogle ScholarPubMed
Zhang, L.-X., Levine, S., Dent, G., Zhan, G., Xing, G., Okimoto, D., et al. (2002). Maternal deprivation increases cell death in the infant rat brain. Developmental Brain Research, 133, 111.CrossRefGoogle ScholarPubMed