Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-21T22:08:08.273Z Has data issue: false hasContentIssue false

A genetic variant brain-derived neurotrophic factor (BDNF) polymorphism interacts with hostile parenting to predict error-related brain activity and thereby risk for internalizing disorders in children

Published online by Cambridge University Press:  21 April 2017

Alexandria Meyer*
Affiliation:
Florida State University
Greg Hajcak
Affiliation:
Florida State University
Elizabeth Hayden
Affiliation:
Florida State University
Haroon I. Sheikh
Affiliation:
Florida State University
Shiva M. Singh
Affiliation:
Florida State University
Daniel N. Klein
Affiliation:
Florida State University
*
Address correspondence and reprint requests to: Alexandria Meyer, Department of Psychology, Florida State University, 1107 West Call Street, Tallahassee, FL 32304; E-mail: meyer@psy.fsu.edu.

Abstract

The error-related negativity (ERN) is a negative deflection in the event-related potential occurring when individuals make mistakes, and is increased in children with internalizing psychopathology. We recently found that harsh parenting predicts a larger ERN in children, and recent work has suggested that variation in the brain-derived neurotrophic factor (BDNF) gene may moderate the impact of early life adversity. Parents and children completed measures of parenting when children were 3 years old (N = 201); 3 years later, the ERN was measured and diagnostic interviews as well as dimensional symptom measures were completed. We found that harsh parenting predicted an increased ERN only among children with a methionine allele of the BDNF genotype, and evidence of moderated mediation: the ERN mediated the relationship between parenting and internalizing diagnoses and dimensional symptoms only if children had a methionine allele. We tested this model with externalizing disorders, and found that harsh parenting predicted externalizing outcomes, but the ERN did not mediate this association. These findings suggest that harsh parenting predicts both externalizing and internalizing outcomes in children; however, this occurs through different pathways that uniquely implicate error-related brain activity in the development of internalizing disorders.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. M., & Edelbrock, C. (1981). Child Behavior Checklist: Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
Albrecht, B., Brandeis, D., Uebel, H., Heinrich, H., Mueller, U. C., Hasselhorn, M., … Banaschewski, T. (2008). Action monitoring in boys with attention-deficit/hyperactivity disorder, their nonaffected siblings, and normal control subjects: Evidence for an endophenotype. Biological Psychiatry, 64, 615625.CrossRefGoogle ScholarPubMed
Amodio, D. M., Master, S. L., Yee, C. M., & Taylor, S. E. (2008). Neurocognitive components of the behavioral inhibition and activation systems: Implications for theories of self-regulation. Psychophysiology, 45, 1119.Google Scholar
Anokhin, A. P., Golosheykin, S., & Heath, A. C. (2008). Heritability of frontal brain function related to action monitoring. Psychophysiology, 45, 524534.Google Scholar
Beauchaine, T. P., & Gatzke-Kopp, L. M. (2012). Instantiating the multiple levels of analysis perspective in a program of study on externalizing behavior. Development and Psychopathology, 24, 10031018.Google Scholar
Beauchaine, T. P., & McNulty, T. (2013). Comorbidities and continuities as ontogenic processes: Toward a developmental spectrum model of externalizing psychopathology. Development and Psychopathology, 25, 15051528.Google Scholar
Beauchaine, T. P., Neuhaus, E., Brenner, S. L., & Gatzke-Kopp, L. (2008). Ten good reasons to consider biological processes in prevention and intervention research. Development and Psychopathology, 20, 745774.CrossRefGoogle ScholarPubMed
Beesdo, K., Knappe, S., & Pine, D. S. (2009). Anxiety and anxiety disorders in children and adolescents: Developmental issues and implications for DSM-V. Psychiatric Clinics of North America, 32, 483524.Google Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885.Google Scholar
Bergen, S. E., Gardner, C. O., & Kendler, K. S. (2007). Age-related changes in heritability of behavioral phenotypes over adolescence and young adulthood: A meta-analysis. Twin Research and Human Genetics, 10, 423433.CrossRefGoogle Scholar
Bögels, S. M., & van Melick, M. (2004). The relationship between child-report, parent self-report, and partner report of perceived parental rearing behaviors and anxiety in children and parents. Personality and Individual Differences, 37, 15831596.Google Scholar
Boksem, M. A. S., Tops, M., Wester, A. E., Meijman, T. F., & Lorist, M. M. (2006). Error-related ERP components and individual differences in punishment and reward sensitivity. Brain Research, 1101, 92101.CrossRefGoogle ScholarPubMed
Brooker, R. J., & Buss, K. A. (2014). Harsh parenting and fearfulness in toddlerhood interact to predict amplitudes of preschool error-related negativity. Developmental Cognitive Neuroscience, 9, 148159.Google Scholar
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215222.CrossRefGoogle ScholarPubMed
Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M., & Meaney, M. J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proceedings of the National Academy of Sciences, 95, 53355340.Google Scholar
Carrasco, M., Harbin, S. M., Nienhuis, J. K., Fitzgerald, K. D., Gehring, W. J., & Hanna, G. L. (2013). Increased error-related brain activity in youth with obsessive-compulsive disorder and unaffected siblingseased error-related brain activity in youth with obsessive-compulsive disorder and unaffected siblings. Depression and Anxiety, 30, 3946.Google Scholar
Casey, B., Glatt, C. E., Tottenham, N., Soliman, F., Bath, K., Amso, D., … Levita, L. (2009). Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development. Neuroscience, 164, 108120.Google Scholar
Cheeran, B., Talelli, P., Mori, F., Koch, G., Suppa, A., Edwards, M., … Rothwell, J. C. (2008). A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. Journal of Physiology, 586, 57175725.Google Scholar
Chiu, P., & Deldin, P. (2007). Neural evidence for enhanced error detection in major depressive disorder. American Journal of Psychiatry, 164, 608616.Google Scholar
Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., von Cramon, D. Y., & Engel, A. K. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. Journal of Neuroscience, 25, 1173011737.Google Scholar
Dehaene, S., Posner, M. I., & Don, M. T. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5, 303305.Google Scholar
Dikman, Z. V., & Allen, J. J. (2000). Error monitoring during reward and avoidance learning in high- and low-socialized individuals. Psychophysiology, 37, 4354.CrossRefGoogle ScholarPubMed
Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., … Dean, M. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257269.CrossRefGoogle ScholarPubMed
Egeland, B., Weinfield, N., Hiester, M., Lawrence, C., Pierce, S., Chippendale, K., & Powell, J. (1995). Teaching tasks administration and scoring manual. Unpublished manuscript, University of Minnesota.Google Scholar
Egger, H. L., Ascher, B. H., & Angold, A. (1999). The Preschool Age Psychiatric Assessment: Version 1.1. Durham, NC: Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Center for Developmental Epidemiology.Google Scholar
Egger, H. L., Erkanli, A., Keeler, G., Potts, E., Walter, B. K., & Angold, A. (2006). Test-retest reliability of the Preschool Age Psychiatric Assessment (PAPA). Journal of the American Academy of Child & Adolescent Psychiatry, 45, 538549.CrossRefGoogle ScholarPubMed
Endrass, T., Klawohn, J., Schuster, F., & Kathmann, N. (2008). Overactive performance monitoring in obsessive-compulsive disorder: ERP evidence from correct and erroneous reactions. Neuropsychologia, 46, 18771887.Google Scholar
Endrass, T., Schuermann, B., Kaufmann, C., Spielberg, R., Kniesche, R., & Kathmann, N. (2010). Performance monitoring and error significance in patients with obsessive-compulsive disorder. Biological Psychology, 84, 257263.CrossRefGoogle ScholarPubMed
Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components: II. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology , 78, 447455.Google Scholar
Francis, D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 286, 11551158.Google Scholar
Franken, I. H., van Strien, J. W., Franzek, E. J., & van de Wetering, B. J. (2007). Error-processing deficits in patients with cocaine dependence. Biological Psychology, 75, 4551.Google Scholar
Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385390.CrossRefGoogle Scholar
Gehring, W. J., Himle, J., & Nisenson, L. G. (2000). Action-monitoring dysfunction in obsessive-compulsive disorder. Psychological Science, 11, 16.Google Scholar
Gratton, G., Coles, M. G., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468484.CrossRefGoogle ScholarPubMed
Groen, Y., Wijers, A. A., Mulder, L. J., Waggeveld, B., Minderaa, R. B., & Althaus, M. (2008). Error and feedback processing in children with ADHD and children with autistic spectrum disorder: An EEG event-related potential study. Clinical Neurophysiology, 119, 24762493.Google Scholar
Gründler, T. O. J., Cavanagh, J. F., Figueroa, C. M., Frank, M. J., & Allen, J. J. B. (2009). Task-related dissociation in ERN amplitude as a function of obsessive–compulsive symptoms. Neuropsychologia, 47, 19781987.Google Scholar
Hajcak, G. (2012). What we've learned from mistakes. Current Directions in Psychological Science, 21, 101106.Google Scholar
Hajcak, G., Franklin, M. E., Foa, E. B., & Simons, R. F. (2008). Increased error-related brain activity in pediatric obsessive-compulsive disorder before and after treatment. American Journal of Psychiatry, 165, 116123.CrossRefGoogle ScholarPubMed
Hajcak, G., McDonald, N., & Simons, R. F. (2004). Error-related psychophysiology and negative affect. Brain and Cognition, 56, 189197.Google Scholar
Hajcak, G., & Simons, R. F. (2002). Error-related brain activity in obsessive–compulsive undergraduates. Psychiatry Research, 110, 6372.Google Scholar
Hall, J. R., Bernat, E. M., & Patrick, C. J. (2007). Externalizing psychopathology and the error-related negativity. Psychological Science, 18, 326333.Google Scholar
Hayden, E. P., Klein, D. N., Dougherty, L. R., Olino, T. M., Dyson, M. W., Durbin, C. E., … Singh, S. M. (2010). The role of brain-derived neurotrophic factor genotype, parental depression, and relationship discord in predicting early-emerging negative emotionality. Psychological Science, 21, 16781685.Google Scholar
Heim, C., & Nemeroff, C. B. (1999). The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biological Psychiatry, 46, 15091522.Google Scholar
Hermann, C., Ziegler, S., Birbaumer, N., & Flor, H. (2002). Psychophysiological and subjective indicators of aversive Pavlovian conditioning in generalized social phobia. Biological Psychiatry, 52, 328337.CrossRefGoogle ScholarPubMed
Hoffmann, S., & Falkenstein, M. (2010). Independent component analysis of erroneous and correct responses suggests online response control. Human Brain Mapping, 31, 13051315.Google Scholar
Holmes, A. J., & Pizzagalli, D. A. (2008). Spatiotemporal dynamics of error processing dysfunctions in major depressive disorder. Archives of General Psychiatry, 65, 179188.Google Scholar
Holmes, A. J., & Pizzagalli, D. A. (2010). Effects of task-relevant incentives on the electrophysiological correlates of error processing in major depressive disorder. Cognitive, Affective, & Behavioral Neuroscience, 10, 119128.Google Scholar
Ibarra, P., Alemany, S., Fatjó-Vilas, M., Córdova-Palomera, A., Goldberg, X., Arias, B., … Fañanás, L. (2014). The BDNF Val66Met polymorphism modulates parental rearing effects on adult psychiatric symptoms: A community twin-based study. European Psychiatry. Advance online publication.CrossRefGoogle ScholarPubMed
Johnson, D., & Casey, B. (2014). Easy to remember, difficult to forget: The development of fear regulation. Developmental Cognitive Neuroscience. Advance online publication.Google Scholar
Kawamura, K. Y., Frost, R. O., & Harmatz, M. G. (2002). The relationship of perceived parenting styles to perfectionism. Personality and Individual Differences, 32, 317327.Google Scholar
Kertes, D. A., Donzella, B., Talge, N. M., Garvin, M. C., Van Ryzin, M. J., & Gunnar, M. R. (2009). Inhibited temperament and parent emotional availability differentially predict young children's cortisol responses to novel social and nonsocial events. Developmental Psychobiology, 51, 521532.CrossRefGoogle ScholarPubMed
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 593602.Google Scholar
Kryski, K. R., Dougherty, L. R., Dyson, M. W., Olino, T. M., Laptook, R. S., Klein, D. N., & Hayden, E. P. (2013). Effortful control and parenting: Associations with HPA axis reactivity in early childhood. Developmental Science, 16, 531541.Google Scholar
Ladouceur, C. D., Dahl, R. E., Birmaher, B., Axelson, D. A., & Ryan, N. D. (2006). Increased error-related negativity (ERN) in childhood anxiety disorders: ERP and source localization. Journal of Child Psychology and Psychiatry, 47, 10731082.CrossRefGoogle ScholarPubMed
Larson, R., & Richards, M. H. (1991). Daily companionship in late childhood and early adolescence: Changing developmental contexts. Child Development, 62, 284300.CrossRefGoogle ScholarPubMed
Last, C. G., Perrin, S., Hersen, M., & Kazdin, A. E. (1996). A prospective study of childhood anxiety disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 35, 15021510.Google Scholar
Lenroot, R. K., Schmitt, J. E., Ordaz, S. J., Wallace, G. L., Neale, M. C., Lerch, J. P., … Giedd, J. N. (2009). Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Human Brain Mapping, 30, 163174.CrossRefGoogle ScholarPubMed
Luijten, M., Machielsen, M. W., Veltman, D. J., Hester, R., de Haan, L., & Franken, I. H. (2014). Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. Journal of Psychiatry & Neuroscience, 39, 149.Google Scholar
MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7, 83.Google Scholar
MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99128.Google Scholar
Marhe, R., van de Wetering, B. J., & Franken, I. H. (2013). Error-related brain activity predicts cocaine use after treatment at 3-month follow-up. Biological Psychiatry, 73, 782788.Google Scholar
McDermott, J. M., Perez-Edgar, K., Henderson, H. A., Chronis-Tuscano, A., Pine, D. S., & Fox, N. A. (2009). A history of childhood behavioral inhibition and enhanced response monitoring in adolescence are linked to clinical anxiety. Biological Psychiatry, 65, 445448.Google Scholar
McKee, L., Colletti, C., Rakow, A., Jones, D. J., & Forehand, R. (2008). Parenting and child externalizing behaviors: Are the associations specific or diffuse? Aggression and Violent Behavior, 13, 201215.Google Scholar
Meyer, A., Bress, J., & Proudfit, G. H. (2014). Psychometric properties of the error-related negativity in children and adolescents. Psychophysiology. Advance online publication.Google Scholar
Meyer, A., Gawlowska, M., & Hajcak, G. (2017). Enhanced error-related negativity is specific to punishment condition in high trait anxiety. Manuscript submitted for publication.Google Scholar
Meyer, A., Hajcak, G., Torpey, D. C., Kujawa, A., Kim, J., Bufferd, S., … Klein, D. N. (2013). Increased error-related brain activity in six-year-old children with clinical anxiety. Journal of Abnormal Child Psychology, 41, 12571266.CrossRefGoogle ScholarPubMed
Meyer, A., Hajcak, G., Torpey-Newman, D. C., Kujawa, A., & Klein, D. N. (in press). Enhanced error-related brain activity in children predicts the onset of anxiety disorders between the ages of 6 and 9. Journal of Abnormal Psychology.Google Scholar
Meyer, A., Proudfit, G. H., Bufferd, S. J., Kujawa, A. J., Laptook, R. S., Torpey, D. C., & Klein, D. N. (2014). Self-reported and observed punitive parenting prospectively predicts increased error-related negativity in six-year-old children. Journal of Abnormal Child Psychology. Advance online publication.Google Scholar
Meyer, A., Weinberg, A., Klein, D. N., & Hajcak, G. (2012). The development of the error-related negativity (ERN) and its relationship with anxiety: Evidence from 8- to 13 year-olds. Developmental Cognitive Neuroscience, 2, 152161.Google Scholar
Monroe, S. M., & Simons, A. D. (1991). Diathesis-stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110, 406.Google Scholar
Munro, G. E., Dywan, J., Harris, G. T., McKee, S., Unsal, A., & Segalowitz, S. J. (2007). ERN varies with degree of psychopathy in an emotion discrimination task. Biological Psychology, 76, 3142.CrossRefGoogle Scholar
Neves-Pereira, M., Mundo, E., Muglia, P., King, N., Macciardi, F., & Kennedy, J. L. (2002). The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: Evidence from a family-based association study. American Journal of Human Genetics, 71, 651655.Google Scholar
Olino, T. M., Klein, D. N., Dyson, M. W., Rose, S. A., & Durbin, C. E. (2010). Temperamental emotionality in preschool-aged children and depressive disorders in parents: Associations in a large community sample. Journal of Abnormal Psychology, 119, 468.Google Scholar
Olvet, D. M., & Hajcak, G. (2008). The error-related negativity (ERN) and psychopathology: Toward an endophenotype. Clinical Psychology Review, 28, 13431354.Google Scholar
Olvet, D. M., Klein, D. N., & Hajcak, G. (2010). Depression symptom severity and error-related brain activity. Psychiatry Research, 179, 3037.Google Scholar
Park, S., Kim, B.-N., Kim, J.-W., Jung, Y.-K., Lee, J., Shin, M.-S., … Cho, S.-C. (2014). The role of the brain-derived neurotrophic factor genotype and parenting in early life in predicting externalizing and internalizing symptoms in children with attention-deficit hyperactivity disorder. Behavioral and Brain Functions, 10, 43.Google Scholar
Peters, J., Dieppa-Perea, L. M., Melendez, L. M., & Quirk, G. J. (2010). Induction of fear extinction with hippocampal-infralimbic BDNF. Science, 328, 12881290.Google Scholar
Pine, D. S. (2007). Research review: A neuroscience framework for pediatric anxiety disorders. Journal of Child Psychology & Psychiatry, 48, 631648.Google Scholar
Potts, G. F., George, M. R. M., Martin, L. E., & Barratt, E. S. (2006). Reduced punishment sensitivity in neural systems of behavior monitoring in impulsive individuals. Neuroscience Letters, 397, 130134.Google Scholar
Pourtois, G., Vocat, R., N'diaye, K., Spinelli, L., Seeck, M., & Vuilleumier, P. (2010). Errors recruit both cognitive and emotional monitoring systems: Simultaneous intracranial recordings in the dorsal anterior cingulate gyrus and amygdala combined with fMRI. Neuropsychologia, 48, 11441159.Google Scholar
Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, and Computers, 36, 717731.Google Scholar
Rapee, R. M., Kennedy, S. J., Ingram, M., Edwards, S. L., & Sweeney, L. (2010). Altering the trajectory of anxiety in at-risk young children. American Journal of Psychiatry, 167, 15181525.Google Scholar
Riesel, A., Endrass, T., Kaufmann, C., & Kathmann, N. (2011). Overactive error-related brain activity as a candidate endophenotype for obsessive-compulsive disorder: Evidence from unaffected first-degree relatives. American Journal of Psychiatry, 168, 317324.Google Scholar
Riesel, A., Weinberg, A., Endrass, T., Kathmann, N., & Hajcak, G. (2012). Punishment has a lasting impact on error-related brain activity. Psychophysiology, 49, 239247.Google Scholar
Robinson, C., Mandleco, B., Olsen, S. F., & Hart, C. (2001). The Parenting Styles and Dimensions Questionnaire (PSDQ). Handbook of Family Measurement Techniques, 3, 319321.Google Scholar
Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24, 389409.Google Scholar
Ruchsow, M., Grön, G., Reuter, K., Spitzer, M., Hermle, L., & Kiefer, M. (2005). Error-related brain activity in patients with obsessive-compulsive disorder and in healthy controls. Journal of Psychophysiology, 19, 298304.Google Scholar
Ruchsow, M., Spitzer, M., Grön, G., Grothe, J., & Kiefer, M. (2005). Error processing and impulsiveness in normals: Evidence from event-related potentials. Cognitive Brain Research, 24, 317325.Google Scholar
Rutter, M., Kim-Cohen, J., & Maughan, B. (2006). Continuities and discontinuities in psychopathology between childhood and adult life. Journal of Child Psychology and Psychiatry, 47, 276295.Google Scholar
Santesso, D. L., Segalowitz, S. J., & Schmidt, L. A. (2006). Error-related electrocortical responses are enhanced in children with obsessive-compulsive behaviors. Developmental Neuropsychology, 29, 431445.Google Scholar
Sen, S., Nesse, R. M., Stoltenberg, S. F., Li, S., Gleiberman, L., Chakravarti, A., … Burmeister, M. (2003). A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology, 28, 397401.Google Scholar
Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience, 12, 154167.Google Scholar
Sheikh, H. I., Hayden, E. P., Kryski, K. R., Smith, H. J., & Singh, S. M. (2010). Genotyping the BDNF rs6265 (val66met) polymorphism by one-step amplified refractory mutation system PCR. Psychiatric Genetics, 20, 109.Google Scholar
Shoham, V., & Insel, T. R. (2011). Rebooting for whom? Portfolios, technology, and personalized intervention. Perspectives on Psychological Science, 6, 478482.Google Scholar
Sklar, P., Gabriel, S., McInnis, M., Bennett, P., Lim, Y., Tsan, G., … Owen, M. (2002). Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Molecular Psychiatry, 7, 579593.Google Scholar
Soliman, F., Glatt, C. E., Bath, K. G., Levita, L., Jones, R. M., Pattwell, S. S., … Somerville, L. H. (2010). A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science, 327, 863866.Google Scholar
Suzuki, A., Matsumoto, Y., Shibuya, N., Ryoichi, S., Kamata, M., Enokido, M., … Otani, K. (2012). Interaction effect between the BDNF Val66Met polymorphism and parental rearing for interpersonal sensitivity in healthy subjects. Psychiatry Research, 200, 945948.Google Scholar
Tamnes, C. K., Walhovd, K. B., Torstveit, M., Sells, V. T., & Fjell, A. M. (2013). Performance monitoring in children and adolescents: A review of developmental changes in the error-related negativity and brain maturation. Developmental Cognitive Neuroscience, 6, 113.Google Scholar
Teicher, M. H., Andersen, S. L., Polcari, A., Anderson, C. M., Navalta, C. P., & Kim, D. M. (2003). The neurobiological consequences of early stress and childhood maltreatment. Neuroscience & Biobehavioral Reviews, 27, 3344.Google Scholar
Torpey, D. C., Hajcak, G., Kim, J., Kujawa, A., & Klein, D. N. (2012). Electrocortical and behavioral measures of response monitoring in young children during a Go/No-Go task. Developmental Psychobiology, 54, 139150.Google Scholar
Von Borries, A., Brazil, I., Bulten, B., Buitelaar, J., Verkes, R., & De Bruijn, E. (2010). Neural correlates of error-related learning deficits in individuals with psychopathy. Psychological Medicine, 40, 15591568.Google Scholar
Weinberg, A., & Hajcak, G. (2011). Longer term test–retest reliability of error-related brain activity. Psychophysiology, 48, 14201425.Google Scholar
Weinberg, A., Klein, D. N., & Hajcak, G. (2012). Increased error-related brain activity distinguishes generalized anxiety disorder with and without comorbid major depressive disorder. Journal of Abnormal Psychology, 121, 885896.CrossRefGoogle ScholarPubMed
Weinberg, A., Meyer, A., Hale-Rude, E., Perlman, G., Kotov, R., Klein, D. N., & Hajcak, G. (in press). Errors as endogenous threat: Conceptual framework and empirical evaluation in an adolescent sample. Psychophysiology.Google Scholar
Weinberg, A., Olvet, D. M., & Hajcak, G. (2010). Increased error-related brain activity in generalized anxiety disorder. Biological Psychology, 85, 472480.Google Scholar
Weinberg, A., Riesel, A., & Hajcak, G. (2012). Integrating multiple perspectives on error-related brain activity: The ERN as a neural indicator of trait defensive reactivity. Motivation and Emotion, 36, 84100.Google Scholar
Willoughby, M. T., Mills-Koonce, R., Propper, C. B., & Waschbusch, D. A. (2013). Observed parenting behaviors interact with a polymorphism of the brain-derived neurotrophic factor gene to predict the emergence of oppositional defiant and callous–unemotional behaviors at age 3 years. Development and Psychopathology, 25, 903917.Google Scholar
Xiao, Z., Wang, J., Zhang, M., Li, H., Tang, Y., Wang, Y., … Fromson, J. A. (2011). Error-related negativity abnormalities in generalized anxiety disorder and obsessive–compulsive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35, 265272.Google Scholar