Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T17:00:46.618Z Has data issue: false hasContentIssue false

Downward host rock transport and the formation of rim monoclines during the emplacement of Cordilleran batholiths

Published online by Cambridge University Press:  11 January 2017

Scott R. Paterson
Affiliation:
Department of Earth Sciences, University of Southern California, Los Angeles, USA, e-mail: paterson@earth.usc.edu
David W. Farris
Affiliation:
Department of Earth Sciences, University of Southern California, Los Angeles, USA, e-mail: paterson@earth.usc.edu

Abstract

The mechanisms by which Cordilleran plutons are emplaced vary widely. However, the present authors have examined a series of plutons ranging from 2-35 km emplacement depth that have many common features, which suggest that downward transport of host rock is the most important mechanism during magma ascent and pluton emplacement. Many of these Cordilleran plutons preserve gently dipping, unfaulted roofs attached to steep walls bordered by narrow ductile aureoles. Flat lying roof strata commonly roll over into steeply dipping rim monoclines and anticlines that young towards and follow the pluton margin. Field observations suggest that such rim monoclines and anticlines formed due to gravitationally driven roof collapse and channel flow along margins. In the examples in this paper, pluton walls are often comprised of narrow steeply dipping ductile aureoles in which the intensity of strain increases downward. Aureole ductile strains are insufficient to account for the volume of magma emplaced, and are typically <40% of pluton volume. However, when aureole strain is combined with minimum estimates of stoping and host rock rotation during rim monoclines formation, sufficient space can be created. The examples suggest that gravitationally driven downward host rock transport by stoping and rigid rotations along roofs and walls and by focused channel flow by ductile strain along walls are common processes during the rise of Cordilleran plutons, and is one process that contributes to crustal thickening and the growth of crustal roots.

Type
Research Article
Copyright
Copyright © The Royal Society of Edinburgh 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albertz, M., Paterson, S.R. & Okaya, D. 2005. Fast strain rates during pluton emplacement: Magmatically folded leucocratic dikes in aureoles of the Mount Stuart Batholith, Washington, and the Tuolumne Intrusive Suite, California. Geological Society of America Bulletin 117 (3/4), 450-65.CrossRefGoogle Scholar
Albertz, M. & Paterson, S.R. 2002. Three-dimensional pure shear during transpression; the effect of Cretaceous plutonism on regional strain fields in the Sierra Nevada Batholith, California. Geological Society of America Abstracts with Programs 34 (6), 328.Google Scholar
Anderson, J.L., Foley, B., Ball, E.N., Paterson, S., Memeti, V. & Pignotta, G. 2007. Upper crustal overturn during magmatic surges - a potential Sierra-wide process. Geological Society of America Abstracts with Programs. Denver, Colorado: Geological Society of America.Google Scholar
Annen, C., Blundy, J. D. & Sparks, R.S.J. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology 47 (3), 505-39.CrossRefGoogle Scholar
Arzi, A.A. 1978. Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44 (1-4), 173-84.Google Scholar
Bateman, P.C. 1992. Plutonism in the Central Part of the Sierra Nevada Batholith, California: United States Geological Survey Professional Paper 1483.Google Scholar
Brown, E.H. & McClelland, W.C. 2000. Pluton emplacement by sheeting and vertical ballooning in part of the southeast Coast Plutonic complex, British Columbia. Geological Society of America Bulletin 112, 708-19.Google Scholar
Buddington, A.F. 1959. Granite emplacement with special reference to North America: Geological Society of America Bulletin 70, 671-747.Google Scholar
Burchfiel, B. C. & Davis, G.A. 1981. Mojave Desert and environs. In Ernst, W.G. (ed.) The geotectonic development of California (Rubey Volume 1), 217-52. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
Burchfiel, B. C. & Davis, G. A. 1988. Mesozoic thrust faults and Cenozoic low-angle normal faults, eastern Spring Mountains, and Nevada, and Clark Mountains thrust complex, California. In Wide, D.L. & Faber, M.L. (eds) This extended land; Geological Journeys in the southern Basin and Range, 87-106, Geological Society of America Cordilleran Section Field Trip Guidebook . Las Vegas, Nevada: University of Nevada Department of Geoscience.Google Scholar
Bussell, M.A. 1985. The centred complex of the Rio Huaura: A study of magma mixing and differentiation in high-level magma chambers. In Pitcher, W.S., Atherton, M.P., Cobbing, E.J. & Beckinsdale, R.D. (eds) Magmatism at a Plate Edge, 128-55. London: Blackie.Google Scholar
Bussell, M.A. & Pitcher, W.S. 1985. The structural controls of batholith emplacement. In Pitcher, W.S., Atherton, M.P., Cobbing, E.J. & Beckinsdale, R.D. (eds) Magmatism at a Plate Edge, 167-76. London: Blackie.CrossRefGoogle Scholar
Coleman, D.S. & Glazner, A.F. 1998. The Sierra Crest magmatic event; rapid formation of juvenile crust during the Late Cretaceous in California. In Ernst, W.G. & Nelson, C.A. (eds) Integrated Earth and environmental evolution of the Southwestern United States; The Clarence A. Hall, Jr., volume, 253-72. Columbia, Maryland: Bellwether Pub.Google Scholar
Crossland, A. 1995. The Hall Canyon pluton: Implications for pluton emplacement and for the Mesozoic history of the west-central Panamint Mountains. Unpublished Masters Thesis, University of Southern California, Los Angeles.Google Scholar
Crowder, D.F., Tabor, R.W. & Ford, A.B. 1966. Geologic map of the Glacier Peak Quadrangle, Snohomish and Chelan counties, Washington. U.S. Geological Survey Geologic Quadrangle Map GQ-473, scale 1:62,500.Google Scholar
Cruden, A.R. 1998. On the emplacement of tabular granites. Journal of the Geological Society of London 155, 853-62.Google Scholar
Daly, R.A. 1903. The mechanics of igneous intrusion. American Journal of Science 16, 107-26.Google Scholar
Dilles, J.H. 1987. The petrology of the Yeringtion batholith, Nevada: Evidence for evolution of porphyry copper fluids. Economic Geology 82, 1750-89.CrossRefGoogle Scholar
Dilles, J.H. & Gans, P. B. 1993. 40Ar/39Ar geochronology of Cenzoic magmatism and faulting, Yerington and northern Wassuk Range, Nevada. Geological Society of America Abstracts with Programs 25 (5), 30.Google Scholar
Dilles, J.H. & Profett, J.M. 1995. Metalogenesis of the Yerington batholith, Nevada. In Pierce, F.W. & Bolm, J.G. (eds) Porphyry Copper Deposits of the American Cordillera, Arizona. Minerologi-cal Society Digest 20, 306-15.Google Scholar
Dilles, J.H. & Wright, J.E. 1988. The chronology of early Mesozoic arc magmatism in the Yerington District of western Nevada and its regional implications. Geological Society of America Bulletin 100, 644-52.2.3.CO;2>CrossRefGoogle Scholar
Ducea, M. 2001. The California Arc; thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups. GSA Today 11 (11), 4-10.2.0.CO;2>CrossRefGoogle Scholar
Ducea, M.N. & Saleeby, J.B. 1996. Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California; evidence from xenolith thermobarometry. Journal of Geophysical Research 101, 8229-14.CrossRefGoogle Scholar
Farris, D.W., Haeussler, P., Friedman, R., Paterson, S.R., Saltus, R.W. & Ayuso, R. 2006. Emplacement of the Kodiak batholith: A consequence of slab-window migration. Geological Society of America Bulletin 118 (11/12), 1360-76.Google Scholar
Farris, D.W. & Paterson, S.R. 2007. Physical contamination of silicic magmas and fractal fragmentation of xenoliths in Paleocene plutons on Kodiak Island, AK. Canadian Mineralogist 45, 107-29.CrossRefGoogle Scholar
Fowler, T.K. Jr. 1996. Pluton Roofs: testing pluton emplacement hypotheses. Unpublished Ph.D. Dissertation, University of Southern California, Los Angeles.Google Scholar
Fowler, T.K. Jr., Paterson, S. R., Crossland, A. & Yoshinobu, A. 1995. Pluton emplacement mechanisms: a view from the roof. In Brown, M & Piccoli, P. (eds) The Origin of Granites and Related Rocks: Third Hutton Symposium Abstracts U.S. Geological Survey Circular 1129, 57.Google Scholar
Glazner, A.F., Bartley, J.M. Coleman, D.S., Gray, W. & Taylor, R.Z. 2004. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14 (4-5), 4-11.Google Scholar
Glazner, A.F. & Miller, D.M. 1997. Late-stage sinking of plutons. Geology 25 (12), 1099.Google Scholar
Grout, F.F. 1948. Origin of granite. Geological Society of America Memoir 28, 45-54.CrossRefGoogle Scholar
Haeussler, P.J. & Paterson, S.R. 1993. Post-emplacement tilting and burial of the Guadalupe Igneous Complex, Sierra Nevada, California. Geological Society of America Bulletin 105, 1310-20.2.3.CO;2>CrossRefGoogle Scholar
Hogan, J., Price, J., & Gilbert, M. 1998. Magma traps and driving pressure: consequences for pluton shape and emplacement in an extensional regime. Journal of Structural Geology 20, 1155-68.CrossRefGoogle Scholar
Humphreys, M.C.S., Blundy, J.D. & Sparks, R.S.J. 2006. Magma Evolution and Open-System Processes at Shiveluch Volcano: Insights from Phenocryst Zoning. Journal of Petrology 47 (12), 2303-34.Google Scholar
Jellinek, A.M. & DePaolo, D.J. 2003. A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bulletin of Volcanology 65, 363-81.Google Scholar
Johnson, C.M. 1991. Large scale crust formation and lithosphère modification beneath middle to late Cenozoic calderas and volcanic fields, western North America. Journal of Geophysical Research 96, 12, 485-13, 507.Google Scholar
Johnson, S.E., Paterson, S.R. & Tate, M.C. 1999. Structure and emplacement history of multiple-center, cone-sheet-bearing ring complex: the Zarza Intrusive Complex, Baja California, Mexico. Geological Society of America Bulletin 111, 607-19.Google Scholar
Kohlstedt, D.L., Evans, B. & Mackwell, S.J. 1995. Strength of the lithosphère: constraints imposed by laboratory experiments. Journal of Geophysical Research 100 (B9), 17, 587-602.CrossRefGoogle Scholar
Lanphere, M.A. & Reed, B.L. 1985. The McKinley Sequence of granitic rocks; a key element in the accretionary history of southern Alaska. Journal of Geophysical Research 90(B13), 11, 413-30.Google Scholar
Lipman, P.W. 1997. Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bulletin of Volcanology 59, 198-218.CrossRefGoogle Scholar
Llambias, E.J. & Sato, A.M. 1990. El batolito de Colonguil (29°-31°S) Cordillera Frontal, Argentina: Estructura y marco tectónico. Revista Geologica di Chile 17, 89-108.Google Scholar
Mahan, K.H., Bartley, J.M., Coleman, D.S., Glazner, A.F. & Cari, B.S. 2003. Sheeted intrusion of the synkinematic McDoogle Pluton, Sierra Nevada, California. Geological Society of America Bulletin 115(12), 1570-82.Google Scholar
Marsh, B.D. 1982. On the mechanics of igneous diapirism, stoping, and zone melting. American Journal of Science 282, 808-55.Google Scholar
Matzel, J., Mundil, R., Paterson, S., Renne, P. & Nomande, S. 2005. Evaluating pluton growth models using high resolution geochronology: Tuolumne intrusive suite, Sierra Nevada, CA. Geological Society of America Abstracts with Programs 37 (7), 131.Google Scholar
McCaffrey, K.J.W. & Petford, N. 1997. Are granitic intrusions scale invariant? Journal of the Geological Society, London 154, 1-1.CrossRefGoogle Scholar
McNulty, B.A., Färber, D.L., Wallace, G.S., Lopez, R. & Palacios, O. 1998. Role of plate kinematics and plate slip-vector partitioning in continental magmatic arcs: Evidence from the Cordillera Blanca, Peru. Geology 26, 827-30.2.3.CO;2>CrossRefGoogle Scholar
McNulty, B.A., Tobisch, O. T., Cruden, A.R. & Gilder, S. 2000. Multistage emplacement of the Mount Givens Pluton, central Sierra Nevada Batholith, California. Geological Society of America Bulletin 112 (1), 119-35.Google Scholar
Michael, P.J. 1991. Intrusion of basaltic magma into a crystallizing granitic magma chamber: The Cordillera del Pain pluton in southern Chile. Contributions to Mineralogy and Petrology 108, 396-418.Google Scholar
Miller, C.F. & Miller, J.S. 2002. Contrasting stratified plutons exposed in tilt blocks, Eldorado Mountains, Colorado River Rift, NV, USA. Lithos 61 (3-4), 209-24.CrossRefGoogle Scholar
Miller, R.B. & Paterson, S.R. 1994. The transition from magmatic to high-temperature solid-state deformation; implications from the Mount Stuart Batholith, Washington. Journal of Structural Geology 16 (6), 853-65.Google Scholar
Miller, R.B. & Paterson, S.R. 1999. In defense of magmatic diapirs. Journal of Structural Geology 21, 1161-73.CrossRefGoogle Scholar
Miller, R.B. & Paterson, S.R. 2001. Construction of mid-crustal sheeted plutons: Examples from the North Cascades, Washington. Geological Society of America Bulletin 113 (11), 1423-42.2.0.CO;2>CrossRefGoogle Scholar
Molyneux, S.J. & Hutton, D.H.W. 2000. Evidence for significant granite space creation by the ballooning mechanism; the example of the Ardara Pluton, Ireland. Geological Society of America Bulletin 112 (10), 1543-58.2.0.CO;2>CrossRefGoogle Scholar
Morgan, S.S., Law, R.D. & Nyman, M.W. 1998. Laccolith-like emplacement model for the Papoose Flat Pluton based on porphyroblast-matrix analysis. Geological Society of America Bulletin 110 (1), 96-110.2.3.CO;2>CrossRefGoogle Scholar
Myers, J.S. 1975. Cauldron subsidence and fluidization: mechanisms of intrusion of the coastal batholith into its own volcanic éjecta. Geological Society of America Bulletin 86, 1209-20.2.0.CO;2>CrossRefGoogle Scholar
Paterson, S.R., Tobisch, O.T. & Vernon, R.H. 1991. Emplacement and deformation of granitoids during volcanic arc construction in the Foothills terrain, central Sierra Nevada, California. Tectono-physics 191, 89-110.Google Scholar
Paterson, S.R., Miller, R.B., Anderson, J.L., Lund, S., Bendixen, J., Taylor, N. & Fink, T. 1994. Emplacement and evolution of Mount Stuart batholith. In Swanson, D.A. & Haugerud, R.A. (eds) Geologic field trips in the Pacific Northwest, Geological Society of America Annual Meeting, 2F-1-2F-47. Seattle: Department of Geological Sciences, University of Washington.Google Scholar
Paterson, S.R., Fowler, T.K. Jr. & Miller, R.B. 1996. Pluton emplacement in arcs: a crustal-scale exchange process. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 115-23.CrossRefGoogle Scholar
Paterson, S. R., Fowler, T.K. Jr., Schmidt, K., Yoshinobu, A. & Yuan, S. 1998. Interpreting Magmatic fabric patterns in plutons. Lithos 44, 53-82.Google Scholar
Paterson, S. R. & Fowler, T.K. Jr. 1993. Reexamining pluton emplacement processes. Journal of Structural Geology 15, 191-206.Google Scholar
Paterson, S.R. & Miller, R.B. 1998a. Mid-crustal magmatic sheets in the Cascades Mountains, Washington: Implications for magma ascent. Journal of Structural Geology 20, 1345-63.CrossRefGoogle Scholar
Paterson, S.R. & Miller, R.B. 1998b. Magma emplacement during are-perpendicular contraction. Tectonics 17, 571-86.CrossRefGoogle Scholar
Paterson, S.R. & Tobisch, O. T. 1992. Rates of geological processes in magmatic arcs: implications for the timing and nature of pluton emplacement “and wall-rock deformation. Journal of Structural Geology 14, 291-301.CrossRefGoogle Scholar
Paterson, S.R. & Vernon, R.H. 1995. Bursting the bubble of ballooning plutons: a return to nested diapirs emplaced by multiple processes. Geological Society of America Bulletin 107, 1356-80.2.3.CO;2>CrossRefGoogle Scholar
Petford, N. & Atherton, M.P. 1992. Granitoid emplacement and deformation along a major crustal lineament: The Cordillera Bianca, Peru. Tectonophysics 205, 171-85.CrossRefGoogle Scholar
Pignotta, G.S. 2006. Testing models for the incremental growth of magma chambers and coupled displacement of host-rocks during pluton construction with an emphasis on magmatic sloping. Unpublished Ph.D. Thesis, University of Southern California, Los Angeles, California.Google Scholar
Pignotta, G.S., Paterson, S.R. & Pettersson, D. 2001. Voluminous stoping in the Mitchell peak granodiorite, Sierra Nevada, California. Geological Society of America Abstracts with Programs, Cordilleran Section 33 (3).Google Scholar
Pignotta, G.S. & Paterson, S.R. 2007. Voluminous stoping in the Mitchell Peak granodiorite, Sierra Nevada batholith, California. Canadian Mineralogist 45, 87-106.CrossRefGoogle Scholar
Pitcher, W.S. 1979. The nature, ascent and emplacement or granite magmas. Journal of Geological Society, London 136, 627-62.Google Scholar
Pitcher, W.S., Atherton, M.P., Cobbing, E.J. & Beckinsdale, R.D. 1985. Magmatism at a Plate Edge. London: Blackie.Google Scholar
Potter, M.E. & Paterson, S.R. 2000. Pluton emplacement in an active fold and thrust belt: an example from the Cordilleran fold and thrust belt, eastern California. Geological Society of America Abstracts with Programs 32 (6), A-63.Google Scholar
Proffett, J.M. 1977. Cenozoic geology of the Yerington district, Nevada, and implications for the nature and origin of basin and range faulting. Geological Society of America Bulletin 88, 247-66.2.0.CO;2>CrossRefGoogle Scholar
Proffett, J.M. & Dilles, J.H. 1984. Geologic map of the Yerington district. Nevada. Nevada Bureau of Mines and Geology map 77, scale 1:24,000.Google Scholar
Ramberg, H. 1967. Gravity, deformation, and the earth’s crust - as studied by centrifugea models. London and New York: Academic Press.Google Scholar
Reed, B.L. & Nelson, S.W. 1980. Geologic map of the Talkeetna Quadrangle, Alaska. U. S. Geological Survey Miscellaneous Field Studies Map MF-870A, scale 1:250,000.Google Scholar
Reid, M.R. & Coath, C.D. 2000. In situ U-Pb ages of zircons from the Bishop Tuff: No evidence for long crystal residence times. Geology 28 (5), 443-6.Google Scholar
Ridgway, K.D., Trop, J.M., Nokleberg, W.J., Davidson, C.M. & Eastham, K.R. 2002. Mesozoic and Cenozoic tectonics of the eastern and central Alaska Range; progressive basin development and deformation in a suture zone. Geological Society of America Bulletin 114(12), 1480-504.Google Scholar
Rubin, A.M. 1995. Propagation of magma-filled cracks. Annual Reviews of Earth and Planetary Science 23, 287-336.CrossRefGoogle Scholar
Saleeby, J.B. 1990. Progress in tectonic and petrogenetic studies in an exposed cross-section of young (∼ 100 Ma) continental crust, southern Sierra Nevada, California. In Salisbury, M.H. & Fountain, D.M. (eds) Exposed Cross-Sections of the Continental Crust, 137-58. NATO Advanced Studies Institute. Dordrecht: Kluwer Academic Publishers.Google Scholar
Saleeby, J.B., Kistler, R.W., Longiaru, S.J., Morre, J.G. & Nokleberg, W.J. 1990. Middle Cretaceous silicic metavolcanic rocks in the Kings Canyon area, central Sierra Nevada, California. In Anderson, J.L. (ed.) The nature and origin of Cordilleran magmatism, Geological Society of America Memoir 174, 251-70.CrossRefGoogle Scholar
Saleeby, J.B. & Busby-Spera, C. 1986. Fieldtrip guide to the meta-morphic framework rocks of the Lake Isabella area, southern Sierra Nevada, California. In Dunne, G.C. (ed.) Mesozoic und Cenozoic structural evolution of selected areas, east-central California: Guidebook and Volume, 81-94. Geological Society of America, Cordilleran Section Meeting.Google Scholar
Sato, A.M., Lambías, E.J., Shaw, S. & Castro, C. 1990. 1 batolito Colanguil: modelo del magmatismo Neopaleozoico de la rovincia de San Juan. In Bordonaro, O. (ed.) Relatorio de geologia у recursos natruales de la Provincia de San Juan, 100-22. Buenos Aires, Argentina: Asociación Geologica Argentina.Google Scholar
Simon, J.L., Reid, M.R. & Young, E.D. 2007. Lead isotopes by LA-MC-ICPMS: Tracking the emergence of mantle signatures in an evolving silicic magma system. Geochimica et Cosmochimica Acta 71, 2014-35.CrossRefGoogle Scholar
Simon, J.I. & Reid, M.R. 2005. The pace of rhyolite differentiation and storage in an ‘archetypical’ silicic magma system, Long Valley, California. Earth and Planetary Science Letters 235, 123-40.Google Scholar
Sparks, R.J.S., Pinkerton, H. & Macdonald, R. 1977. The transport of xenoliths in magmas. Earth and Planetary Science Letters 35, 234-8.CrossRefGoogle Scholar
Stein, E., Dietl, C. & Paterson, S.R. 1996. Emplacement of the southern Inyo Batholith, California. Geological Society of America, Cordilleran Section, Abstracts with Programs 28 (5), 113-14.Google Scholar
Stein, E. & Paterson, S.R. 1996. Country rock displacement during emplacement of the Joshua Flat pluton, White-Inyo Mountains, California. In Oncken, O. & Janssen, C. (eds) Basement Tectonics 11, 35-49. Dordrecht: Kluwer Academic Publishers.Google Scholar
Tait, S., Jaupart, C. & Vergniolle, S. 1989. Pressure, gas content and eruption periodicity of a shallow crystallizing magma chamber. Earth and Planetary Science Letters 92, 107-23.CrossRefGoogle Scholar
Tate, M.C., Norman, M.D., Johnson, S.E., Fanning, C M. & Anderson, J.L. 1999. Generation of tonalité and trondhjemite by subvolcanic fractionation and partial melting in the Zarza intrusive complex, western Peninsular Ranges Batholith, northwestern Mexico. Journal of Petrology 40 (6), 983-1010.CrossRefGoogle Scholar
Titus, S.J., Clark, R. & Tikoff, B. 2005. Geologic and geophysical investigation of two fine-grained granites, Sierra Nevada Batholith, California; evidence for structural controls on emplacement and volcanism. Geological Society of America Bulletin 117 (9-10), 1256-71.CrossRefGoogle Scholar
Tobisch, O. T., Saleeby, J.B. & Fiske, R.S. 1986a. Structural history of continental volcanic arc rocks, eastern Sierra Nevada. California; a case for extensional tectonics. Tectonics 5 (1), 65-94.Google Scholar
Tobisch, O. T., Saleeby, J.B., Renne, P.R., McNulty, B.A., & Tong, W. 1986b. Variations in deformation fields during development of large volume magmatic arc, central Sierra Nevada, California. Geological Society of America Bulletin 107(2), 148-66.2.3.CO;2>CrossRefGoogle Scholar
Tobisch, O. T., Salleby, J.B., Renne, P.R., McNulty, B.A. & Tong, W. 1995. Variations in deformation fields during development of a large-volume magmatic arc, central Sierra Nevada, California. Geological Society of America Bulletin 107(2), 148-66.2.3.CO;2>CrossRefGoogle Scholar
Tobisch, O. T., Fiske, R.S., Saleeby, J.B., Holt, E. & Sorensen, S.S. 2000. Steep tilting of metavolcanic rocks by multiple mechanisms. central Sierra Nevada, California. Geological Society oj America Bulletin 112 (7), 1043-58.2.0.CO;2>CrossRefGoogle Scholar
Treoloar, P.J. & Rex, D.C. 1990. Cooling and uplift histories of the crystalline thrust stack of the Indian Plate internal zones west of Nanga Parbat, Pakistan Himalaya. Tectonophysics 180 323-19.CrossRefGoogle Scholar
Walker, J.D., Burchfiel, B. C. & Davis, G.A. 1995. New age controls on initiation and timing of foreland belt thrusting in the Clark Mountains, southern California. Geological Society of America Bulletin 107, 742-50.2.3.CO;2>CrossRefGoogle Scholar
Weinberg, R. F. 1999. Mesoscale pervasive felsic magma migration; alternatives to dyking. Lithos 46 (3), 393-10.Google Scholar
Wernicke, B., Clayton, R., Ducea, M., Jones, C.H., Park, S., Rupert, S., Saleeby, J., Snow, J.K., Squires, L., Fliedner, M., Jiracek, G., Keller, R., Klemperer, S., Luetgert, J., Malin, P., Miller, K., Mooney, W., Oliver, H. & Phinney, R. 1996. Origin of high mountains in the continents: The southern Sierra Nevada. Science 271, 190-3.CrossRefGoogle Scholar
West, A. W. 1994. A petrologie and geochronologie study of the McKinley Pluton, Alaska. Master’s Thesis, University of Alaska at Fairbanks, Alaska, USA.Google Scholar
Wiebe, R.A. 1993. The Pleasant Bay layered gabbro-diorite, coastal Maine; ponding and crystallization of basaltic injections into a silicic magma chamber. Journal of Petrology 34 (3), 461-89.CrossRefGoogle Scholar
Yoshinobu, A.S., Fowler, T.K., Paterson, S.R., Llambias, E., Tickyj, H. & Sato, A.M. 2003. A view from the roof; magmatic stoping in the shallow crust, Chita Pluton, Argentina. Journal of Structural Geology 25 (7), 1037-18.CrossRefGoogle Scholar
Zák, J. & Paterson, S.R. 2005. Characteristics of internal contacts in the Tuolumne Batholith, central Sierra Nevada, California (USA); implications for episodic emplacement and physical processes in a continental arc magma chamber. Geological Society of America Bulletin 117 (9-10), 1242-55.CrossRefGoogle Scholar
Zák, J. & Paterson, S.R. 2006. Roof and walls of the Red Mountain Creek pluton, eastern Sierra Nevada, California (USA): implications for process zones during pluton emplacement. Journal of Structural Geology 28, 575-87.Google Scholar