Hostname: page-component-68945f75b7-zpsnj Total loading time: 0 Render date: 2024-08-06T03:27:59.507Z Has data issue: false hasContentIssue false

Petrology and origin of the type monchiquites and associated lamprophyre dykes of Serra de Monchique, Portugal

Published online by Cambridge University Press:  06 July 2012

N. M. S. Rock
Affiliation:
Institute of Geological Sciences, West Mains Road, Edinburgh

Synopsis

The term ‘monchiquite’ has suffered such conflicting usage that a redefinition is here proposed: monchiquites are alkaline lamprophyres with essential brown amphibole and/or biotite but not necessarily with olivine, possessing a near-isotropic feldspar-free base of glass (hyalomonchiquites), analcime (analcime-monchiquites) or nepheline (nepheline-monchiquites). This effectively reverts to Rosenbusch's original definition, whilst accommodating established practices in the subsequent literature. Notwithstanding certain published interpretations, the type monchiquites from Monchique and Rio de Janeiro are hyalomonchiquites.

The Monchique monchiquites are associated with camptonites and sannaites in a dyke swarm invading the Monchique foyaitic intrusion. Field, petrological, geothermometric and geochemical evidence is presented to suggest that these dykes resulted from two mixing processes: (i) a version of Bowen's classic reaction between mafic crystals and alkaline liquids—here between cumulus divines and foyaitic magma; (ii) hybridisation of hydrous theralitic and nepheline syenite magmas, restricted by liquid immiscibility. The secondary origin of certain dykes is evinced by extreme mineralogical disequilibrium. The monchiquites could represent a more advanced stage of such processes than the camptonites and sannaites.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bowen, N. L., 1928. Evolution of the Igneous Rocks. Princeton Univ. Press, 332 pp.Google Scholar
Currie, K. L. and Ferguson, J., 1970. The mechanism of intrusion of lamprophyre dikes indicated by ‘off-setting’ of dikes. Tectonophysics, 9, 525535.Google Scholar
Edgar, A. D., 1974. Experimental Studies, pp. 355–388. In The Alkaline Rocks, ed. Sorensen, H.New York: Wiley, 622 pp.Google Scholar
Evans, J. W., 1901. A Monchiquite from Girnar, Junagarth. Q. Jl Geol. Soc. Lond., 57, 3852.CrossRefGoogle Scholar
Fenner, C. E., 1938. Olivine fourchites from Antarctica. Bull. Geol. Soc. Am., 49, 367400.Google Scholar
Ferguson, J. and Currie, K. L., 1971. Evidence of liquid immiscibility in alkalic ultrabasic dikes, Ontario. J. Petrology, 12, 561585.CrossRefGoogle Scholar
Flett, J. S., 1900. Trap dykes of the Orkneys. Trans. Roy. Soc. Edinb., 39, 865906.Google Scholar
Gass, I. G. and Mallick, D. I. J., 1968. Jebel Khariz: an Upper Miocene strato-volcano of comenditic affinity. Bull Volcan., 32, 3388.CrossRefGoogle Scholar
Gibb, F. G. F. and Henderson, C. M. B., 1976. The origin of analcime in a crinanite sill. Prog. Exp. Petr. N.E.R.C. Pub. Ser. D, 6, 5054 (see also Min. Mag., 41, 534).Google Scholar
Grout, F. F., 1932. Petrography and petrology. 1st edn. New York, London: McGraw-Hill, 522 pp.Google Scholar
Hamilton, D. L. and Mackenzie, W. S., 1960. Nepheline solid solution in the system NaAlSiO4-KAlSiO4-SiO2. J. Petrology, 1, 5671.CrossRefGoogle Scholar
Harker, A., 1954. Petrology for Students. Cambridge Univ. Press, 283 pp.Google Scholar
Hartley, J. and Leedal, G. P., 1951. A Monchiquite vent, Stob a'Ghrianain, Inverness-shire. Geol. Mag., 88, 140144.CrossRefGoogle Scholar
Hatch, F. H., Wells, A. K. and Wells, M. K., 1972. Petrology of the Igneous Rocks. London: George Allen & Unwin, 515 pp.Google Scholar
Holmes, A., 1915. A contribution to the Petrology of north-west Angola. Geol. Mag., 2, 322328.Google Scholar
Holmes, A., 1920. The Nomenclature of Petrology. London: Thomas Murby, 284 pp.Google Scholar
Hunter, M. and Rosenbusch, H., 1890. Ueber Monchiquit, ein Camptonitisches Gangestein aus der Gefolgschaft der Elaeolithsyenit. Tschermaks Miner. Petrogr. Mitt., 11, 445466.Google Scholar
Iddings, J. P., 1909. Igneous Rocks. Vol. II. New York: Wiley, 685 pp.Google Scholar
Johannsen, A., 1938. A descriptive petrography of the Igneous Rocks, Vol. IV. Chicago Univ. Press, 523 pp.Google Scholar
Knopf, A., 1936. Igneous geology of the Spanish Peaks Region. Bull. Geol. Soc. Am., 47, 17281784.Google Scholar
Koschlau, K. Kraatz Von and Hackmann, V., 1897. Der Elaeolithsyenit der Serra de Monchique. Tschermaks Miner. Petrogr. Mitt., 16, 197307.Google Scholar
Macgregor, M. and Macgregor, A. G., 1948. The Midland Valley of Scotland. 2nd edn. British Regional Geology Geol. Surv. U.K. Edinburgh: H.M.S.O.Google Scholar
Macdonald, R., 1969. The petrology of alkaline dykes from the Tugtutoq area, S Greenland. Bull. Geol. Soc. Denmark, 19, 257281.Google Scholar
Mackenzie, D. E. and White, A. J. R., 1970. Phonolite globules in basanite from Kiandra, Australia. Lithos, 3, 309317.Google Scholar
Mal'Kov, B. A., 1970. Differentiation in monchiquite dikes. Dokl. Acad. Sci. U.S.S.R., Earth Sci. Sect., 94, 155 (English trans.).Google Scholar
McCallien, W. J., 1927. Preliminary account of the post-Dalradian geology of Kintyre. Trans. Geol. Soc. Glasg., 18, 40–126 (see p. 75).Google Scholar
Moorhouse, W. W., 1959. The study of rocks in thin section. New York: Harper, 514 pp.Google Scholar
Noble, D. C., 1967. Sodium, potassium and ferrous iron contents of some secondarily hydrated natural silicic glasses. Am. Miner., 52, 280286.Google Scholar
O'Hara, M. J. and Biggar, G. M., 1969. Diopside-spinel equilibria, anorthite and forsterite reaction relations in silica-poor liquids and their bearing on the genesis of melilitites and nephelinites. Am. J. Sci., 267A, 364390.Google Scholar
Perchuk, L. L. and Ryabchikov, I. D., 1968. Mineral equilibria in the system Nepheline-Alkali feldspar-Plagioclase and their petrological significance. J. Petrology, 9, 123167.Google Scholar
Phillips, W. J., 1968. The crystallisation of the teschenite from the Lugar sill, Ayrshire. Geol. Mag., 105, 2334.Google Scholar
Philpotts, A. R., 1972. Density, surface tension and viscosity of the immiscible phase in a basic alkaline magma. Lithos, 5, 118.CrossRefGoogle Scholar
Philpotts, A. R., 1976. Liquid immiscibility—its probable extent and petrogenetic significance. Am. J. Sci., 276, 11471177.Google Scholar
Pirrson, L. V., 1896. On the monchiquites or analcite group of igneous rocks. J. Geol., 4, 679683.Google Scholar
Powell, M. and Powell, R., 1974. An olivine-clinopyroxene geothermometer. Contr. Miner. Petr., 48, 249263.Google Scholar
Powell, M., 1977. A nepheline-alkali feldspar geothermometer. Contr. Miner. Petr., 62, 193204.Google Scholar
Ramsay, J., 1955. A camptonite dyke suite at Monar, Inverness-shire. Geol. Mag., 92, 297309.Google Scholar
Rittman, A., 1973. Stable Mineral Assemblages of Igneous Rocks, Berlin: Springer, 262 pp.Google Scholar
Rock, N. M. S., 1976 a. The Comparative Strontium Isotropic Composition of Alkaline Rock: New data from Southern Portugal and East Africa. Contr. Miner. Petr., 56, 205228.Google Scholar
Rock, N. M. S., 1976 b. Petrogenetic significance of some alkaline rocks from southern Portugal and East Africa. Unpubl. Ph.D. thesis, Cambridge Univ.Google Scholar
Rock, N. M. S., 1977. The nature and origin of lamprophyres; I: some definitions, distinctions and derivations. Earth-Sci. Rev., 13, 123169.Google Scholar
Rock, N. M. S., 1978. Petrology and petrogenesis of the Monchique alkaline complex, Portugal. J. Petrology, 19, 171214.Google Scholar
Rosenbusch, H., 1896. Mikroskopiche Physiographie der Mineralien und Gesteine. Vol. II: Massige Gesteine. Pt. I: Tiefgestein und Gangesteine. 1907 edn, p. 685. Stuttgart: Schweizbartsche.Google Scholar
Rosenbusch, H., 1898. Elemente der Gesteinlehre. 1st edn., p. 233 (2nd, p. 242, 3rd, p. 298, 4th, p. 335). Stuttgart: Schweizbartsche.Google Scholar
Santos, A. R. DOS, 1973. Estudo geológico do maciço eruptivo de Monchique. Bolm Mus. Lab. Miner. Geol. Fac. Ciências Lisboa, 13, 143251.Google Scholar
Scott, A., 1920. On primary analcite and analcitization. Trans. Geol. Soc. Glasg., 16, 3445.Google Scholar
Shand, S. J., 1943. Eruptive Rocks. 2nd edn. London: Thomas Murby, 444 pp.Google Scholar
Siegel, S., 1956. Non-parametric statistics for the behavioural sciences. New York: McGraw-Hill, 312 pp.Google Scholar
Smith, H. G., 1936. On new lamprophyres and monchiquites from Jersey. Q. Jl Geol. Soc. Lond., 92, 365381.Google Scholar
Sood, M. K. and Edgar, A. D., 1970. Melting relations of Greenland under-saturated alkaline rocks. Meddr Grønland, 181, 12.Google Scholar
Sorensen, H., 1974. The Alkaline Rocks. New York: Wiley, 622 pp.Google Scholar
Sparks, R. S. J. and Wade, G. 1975. Geology and geochemical studies of the Sintra Alkaline Igneous Complex, Portugal. Bull. Volcan., 39, 385406.CrossRefGoogle Scholar
Strong, D. F. and Harris, A., 1974. The petrology of Mesozoic alkaline intrusives of central Newfoundland. Can. J. Earth Sci., 11, 12081219.Google Scholar
Tomkeieff, S. I., 1952. Nepheline Basanite of Southdean, Roxburghshire. Trans. Edinb. Geol. Soc, 14, 349359.Google Scholar
Troger, W. E., 1935. Spezielle Petrographie der Eruptivgesteine. Bonn: Verlag der Deutschen Mineralogisch Gesellschaft, 360 pp.Google Scholar
Troger, W. E., 1939. Ueber Theralith und Monchiquit. Zentbl.-Miner. Geol. Paläont. Abt. A, 8094.Google Scholar
Tyrrell, G. W., 1912. The Late Paleozoic Alkaline Igneous Rocks of the west of Scotland. Geol. Mag., 9, 69–80, and 120131.CrossRefGoogle Scholar
Tyrrell, G. W., 1928. A further contribution to the petrography of the late Palaeozoic Igneous suite of S.W. Scotland. Trans. Geol. Soc. Glasg., 18, 259295.Google Scholar
Tyrrell, G. W., 1948. The Principles of Petrology. London: Methuen, 349 pp.Google Scholar
Upton, B. G. J., 1965. Petrology of a camptonite sill, Greenland. Meddr Gronland, 169 (11), 18 pp.Google Scholar
Wager, L. R. and Bailey, E. B., 1953. Basic magma chilling against acid magma. Nature, Lond., 172, 7879.Google Scholar
Walker, G. P. L. and Ross, J. V., 1954. A xenolithic Monchiquite, Glenfinnan. Geol. Mag., 91, 463472.Google Scholar
Werveke, L. Van, 1880. Ueber den Nephelin-Syenit der Serra de Monchique im südlichen Portugal. Neues Jb. Miner. Geol. Paldont., 11, 141180.Google Scholar
Wilkinson, J. F. G., 1968. Analcimes from some potassic igneous rocks and aspects of analcime-rich igneous assemblages Contr. Miner. Petr., 18, 252269.Google Scholar
Wilkinson, J. F. G., 1977. Analcime phenocrysts in a vitrophyric analcimite-primary or secondary? Contr. Miner. Petr., 64, 111.Google Scholar
Williams, J. H., 1890. Igneous Rocks of Arkansas. Geol. Surv. Arkansas Ann. Report for 1890, vol. II, 107.Google Scholar
Williams, D., 1936. Pliocene volcanoes of the Navajo-Hopi country. Bull. Geol. Soc. Am., 47, 111172.Google Scholar
Wood, B. J., 1976. An olivine-clinopyroxene geothermometer: a discussion. Contr. Miner. Petr., 56, 297304.Google Scholar