Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-21T10:13:53.939Z Has data issue: false hasContentIssue false

A review of the stem amniote Eldeceeon rolfei from the Viséan of East Kirkton, Scotland

Published online by Cambridge University Press:  10 August 2020

Marcello RUTA*
Affiliation:
School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Green Lane, LincolnLN6 7DL, UK.
Jennifer A. CLACK
Affiliation:
University Museum of Zoology, Downing Street, CambridgeCB2 3EJ, UK.
Timothy R. SMITHSON
Affiliation:
University Museum of Zoology, Downing Street, CambridgeCB2 3EJ, UK.
*
*Corresponding author. Email: mruta@lincoln.ac.uk

Abstract

The late Viséan anthracosauroid Eldeceeon rolfei from the East Kirkton Limestone of Scotland is re-described. Information from two originally described and two newly identified specimens broadens our knowledge of this tetrapod. A detailed account of individual skull bones and a revision of key axial and appendicular features are provided, alongside the first complete reconstructions of the skull and lower jaw and a revised reconstruction of the postcranial skeleton. In comparison to Silvanerpeton, the only other anthracosauroid from East Kirkton, Eldeceeon is characterised by a proportionally wider semi-elliptical skull, comparatively smaller nostrils set farther apart, smaller and more rounded orbits, a shorter skull table with gently convex lateral margins, and a deeper suspensorium with a straight posterior margin and a small dorsal embayment. The remarkably large hind feet and elongate toes of Eldeceeon presumably represent an adaptation for attaining high locomotory speed through increased stride length and reduced stride frequency. This would necessitate great muscle force but few muscle contractions. At the beginning of a new stride cycle, repositioning the pes anteriorly and lifting the toes off the ground would require a strong and large muscle to pull the femur upward and rotate it inward and forward. It is hypothesised that such muscle might correspond to the puboischiofemoralis internus 2, which would extend along the posterior half of the vertebral column, consistent with the occurrence of long, curved ribs in the anterior half of the trunk. Using maximum parsimony and Bayesian inference, cladistic analyses of all major groups of stem amniotes retrieve a sister group relationship between Eldeceeon and Silvanerpeton, either as the most plesiomorphic stem amniote clade or as a clade immediately crownward of anthracosauroids.

Type
Articles
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

10. References

Aerts, P., Van Damme, B., Vanhooydonck, B., Zaaf, A. & Herrel, A. 2000. Lizard locomotion: how morphology meets ecology. Netherlands Journal of Zoology 50, 261–77.CrossRefGoogle Scholar
Anderson, J. S., Smithson, T., Mansky, C. F., Meyer, T. & Clack, J. A. 2015. A diverse tetrapod fauna at the base of ‘Romer's Gap’. PLoS ONE 10, 127.Google ScholarPubMed
Arbez, T., Sidor, C. A. & Steyer, J.-S. 2019. Laosuchus naga gen. et sp. nov., a new chroniosuchian from South-East Asia (Laos) with internal structures revealed by micro-CT scan and discussion of its palaeobiology. Journal of Systematic Palaeontology 17, 945–62.CrossRefGoogle Scholar
Bates, K., Maidment, S. C. R., Schachner, E. R. & Barrett, P. M. 2015. Comments and corrections on 3D modelling studies of locomotor muscle moment arms in archosaurs. PeerJ 3, e1272.CrossRefGoogle Scholar
Bystrow, A. P. & Efremov, I. A. 1940. Benthosuchus sushkini Efr. – a labyrinthodont from the Eotriassic of Sharzhenga river. Trudy Paleontologičeskogo Instituta Akademii Nauk SSSR 10, 1152. [in Russian.]Google Scholar
Carroll, R. L. 1970. The ancestry of reptiles. Philosophical Transactions of the Royal Society of London, Series B 257, 267308.Google Scholar
Carroll, R. L., Bossy, K. A., Milner, A. C., Andrews, S. M. & Wellstead, C. F. 1998. Handbook of paleoherpetology, part 1: Lepospondyli. München: Verlag Dr. Friedrich Pfeil. 216 pp.Google Scholar
Clack, J. A. 1983. The stapes of the Coal Measures embolomere Pholiderpeton scutigerum Huxley and otic evolution in early tetrapods. Zoological Journal of the Linnean Society 79, 121–48.CrossRefGoogle Scholar
Clack, J. A. 1987. Pholiderpeton scutigerum Huxley, an amphibian from the Yorkshire Coal Measures. Philosophical Transactions of the Royal Society of London, Series B 318, 1107.Google Scholar
Clack, J. A. 1994. Silvanerpeton miripedes, a new anthracosauroid from the Viséan of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 369–76.CrossRefGoogle Scholar
Clack, J. A. 1998. A new Early Carboniferous tetrapod with a mélange of crown-group characters. Nature 394, 6669.CrossRefGoogle Scholar
Clack, J. A. 2001. Eucritta melanolimnetes from the Early Carboniferous of Scotland, a stem tetrapod showing a mosaic of characteristics. Transactions of the Royal Society of Edinburgh: Earth Sciences 92, 7595.CrossRefGoogle Scholar
Clack, J. A. 2011. A new microsaur from the early Carboniferous (Viséan) of East Kirkton, Scotland, showing soft tissue evidence. Special Papers in Palaeontology 86, 111.Google Scholar
Clack, J. A. 2012. Gaining ground: the origin and evolution of tetrapods. 2nd edn. Bloomington, Indiana: Indiana University Press. 523 pp.Google Scholar
Clack, J. A. 2017. The East Kirkton Lagerstätte: a window onto Early Carboniferous land ecosystems. In Fraser, N. C. & Sues, H. D. (eds) Terrestrial conservation lagerstätten: windows into the evolution of life on land, 3964. Edinburgh: Dunedin Academic Press.Google Scholar
Clack, J. A., Bennett, C. E., Carpenter, D. K., Davies, S. J., Fraser, N. C., Kearsey, T. I., Marshall, J. E. A., Millward, D., Otoo, B. K. A., Reeves, E. J., Ross, A. J., Ruta, M., Smithson, K. Z., Smithson, T. R. & Walsh, S. A. 2016. Phylogenetic and environmental context of a Tournaisian tetrapod fauna. Nature Ecology and Evolution 1, 111.Google ScholarPubMed
Clack, J. A., Ruta, M., Milner, A. R., Marshall, J. E. A., Smithson, T. R. & Smithson, K. Z. 2019. Acherontiscus caledoniae: the earliest heterodont and durophagous tetrapod. Royal Society Open Science 6, 110.CrossRefGoogle ScholarPubMed
Clack, J. A. & Finney, S. M. 2005. Pederpes finneyae, an articulated tetrapod from the Tournaisian of Western Scotland. Journal of Systematic Palaeontology 2, 311–46.CrossRefGoogle Scholar
Clack, J. A. & Klembara, J. 2009. An articulated specimen of Chroniosaurus dongusensis and the morphology and relationships of the chroniosuchids. Special Papers in Palaeontology 81, 1542.Google Scholar
Clack, J. A. & Milner, A. R. 2015. Handbook of paleoherpetology, part 3A1: basal Tetrapoda. München: Verlag Dr. Friedrich Pfeil. 93 pp.Google Scholar
Danto, M., Witzmann, F. & Müller, J. 2012. Redescription and phylogenetic relationships of Solenodonsaurus janenschi Broili, 1924, from the Late Carboniferous of Nýřany, Czech Republic. Fossil Record 15, 4559.CrossRefGoogle Scholar
Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D. & Kluge, A. G. 1996. Parsimony jackknifing outperforms neighbor-joining. Cladistics 12, 99124.CrossRefGoogle Scholar
Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–91.CrossRefGoogle ScholarPubMed
Ford, D. P. & Benson, R. B. J. 2019. A redescription of Orovenator mayorum (Sauropsida, Diapsida) using high resolution μCT, and the consequences for early amniote phylogeny. Papers in Palaeontology 5, 197239.CrossRefGoogle Scholar
Fraser, N. C., Smithson, T. R. & Clack, J. A. (eds) 2018. A legacy in fossils: a tribute to Stan Wood. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, vol. 108. Cambridge: Cambridge University Press. 117 pp.Google Scholar
Gelman, A. & Rubin, D. B. 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7, 457–72.CrossRefGoogle Scholar
Goloboff, P. 1993. Estimating character weighting during tree search. Cladistics 9, 8391.CrossRefGoogle Scholar
Goloboff, P. A., Torres, A. & Arias, J. S. 2018. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34, 407–37.CrossRefGoogle Scholar
Goodrich, E. S. 1916. On the classification of the Reptilia. Proceedings of the Royal Society of London. Series B 89, 261–76.Google Scholar
Haeckel, E. 1866. Generelle Morphologie der Organismen: allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie. Berlin: Verlag von Georg Reimer. 574 pp.CrossRefGoogle Scholar
Holmes, R. B. 1984. The Carboniferous amphibian Proterogyrinus scheelei Romer, and the early evolution of tetrapods. Philosophical Transactions of the Royal Society of London, Series B 306, 431527.Google Scholar
Holmes, R. B. 1989. The skull and axial skeleton of the Lower Permian anthracosauroid amphibian Archeria crassidisca Cope. Palaeontographica Abteilung A 207, 161206.Google Scholar
Jaekel, O. 1909. Über die Klassen der Tetrapoden. Zoologischer Anzeiger 34, 193212.Google Scholar
Jarvik, E. 1996. The Devonian tetrapod Ichthyostega. Fossils & Strata 40, 1206.Google Scholar
Kathe, W. 1999. Comparative morphology and functional interpretation of the sutures in the dermal skull roof of temnospondyl amphibians. Zoological Journal of the Linnean Society 126, 139.CrossRefGoogle Scholar
Klembara, J. 1997. The cranial anatomy of Discosauriscus Kuhn, a seymouriamorph tetrapod from the Lower Permian of the Boskovice Furrow (Czech Republic). Philosophical Transactions of the Royal Society of London B 352, 257302.CrossRefGoogle Scholar
Klembara, J., Clack, J. A., Milner, A. R. & Ruta, M. 2014. Cranial anatomy, ontogeny, and relationships of the Late Carboniferous tetrapod Gephyrostegus bohemicus Jaekel, 1902. Journal of Vertebrate Paleontology 34, 774–92.CrossRefGoogle Scholar
Klembara, J., Hain, M., Ruta, M., Berman, D. S., Pierce, S. E. & Henrici, A. C. 2020. Inner ear morphology of diadectomorphs and seymouriamorphs (Tetrapoda) uncovered by high-resolution x-ray microcomputed tomography, and the origin of the amniote crown-group. Palaeontology 63, 131–54.CrossRefGoogle Scholar
Klembara, J. & Bartík, I. 2000. The postcranial skeleton of Discosauriscus Kuhn, a seymouriamorph tetrapod from the Lower Permian of the Boskovice Furrow (Czech Republic). Transactions of the Royal Society of Edinburgh: Earth Sciences 90, 287316.CrossRefGoogle Scholar
Klembara, J. & Ruta, M. 2004a. The seymouriamorph tetrapod Utegenia shpinari from the ?Upper Carboniferous–Lower Permian of Kazakhstan. Part I: cranial anatomy and ontogeny. Transactions of the Royal Society of Edinburgh: Earth Sciences 94, 4574.CrossRefGoogle Scholar
Klembara, J. & Ruta, M. 2004b. The seymouriamorph tetrapod Utegenia shpinari from the ?Upper Carboniferous–Lower Permian of Kazakhstan. Part I: postcranial anatomy and relationships. Transactions of the Royal Society of Edinburgh: Earth Sciences 94, 7593.CrossRefGoogle Scholar
Klembara, J. & Ruta, M. 2005a. The seymouriamorph tetrapod Ariekanerpeton sigalovi from the Lower Permian of Tadzhikistan. Part I: cranial anatomy and ontogeny. Transactions of the Royal Society of Edinburgh: Earth Sciences 96, 4370.CrossRefGoogle Scholar
Klembara, J. & Ruta, M. 2005b. The seymouriamorph tetrapod Ariekanerpeton Sigalovi from the Lower Permian of Tadzhikistan. Part II: postcranial anatomy and relationships. Transactions of the Royal Society of Edinburgh: Earth Sciences 96, 7193.CrossRefGoogle Scholar
Laurin, M. 2001. L'utilisation de la taxonomie phylogénétique en paléontologie: Avatages et inconvénients. Biosystema 19, 197211.Google Scholar
Laurin, M. & Reisz, R. R. 1999. A new study of Solenodonsaurus janenschi, and a reconsideration of amniote origins and stegocephalian evolution. Canadian Journal of Earth Sciences 36, 1239–55.CrossRefGoogle Scholar
Lloyd, G. T. 2016. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biological Journal of the Linnean Society 118, 131–51.CrossRefGoogle Scholar
Marjanović, D. & Laurin, M. 2019. Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix. PeerJ 6, 1191.CrossRefGoogle ScholarPubMed
Milner, A. C. 1994. The aïstopod amphibian from the Viséan of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 363–68.CrossRefGoogle Scholar
Milner, A. R. & Sequeira, S. E. K. 1994. The temnospondyl amphibians from the Viséan of East Kirkton, West Lothian. Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 331–61.CrossRefGoogle Scholar
Panchen, A. L. 1970. Handbuch der Paläoherpetologie, Teil 5A: Anthracosauria. Stuttgart: Gustav Fischer Verlag. 84 pp.Google Scholar
Panchen, A. L. & Smithson, T. R. 1988. The relationships of early tetrapods. In Benton, M. J. (ed.) The phylogeny and classification of the tetrapods 1, amphibians, reptiles, birds, 132. Oxford: Clarendon Press.Google Scholar
Pardo, J. D., Szostakiwskyj, M., Ahlberg, P. E. & Anderson, J. S. 2017. Hidden morphological diversity among early tetrapods. Nature 546, 642–45.CrossRefGoogle ScholarPubMed
Reilly, S. M., Willey, J. S., Biknevicius, A. R. & Blob, R. W. 2005. Hindlimb function in the alligator: integrating movements, motor patterns, ground reaction forces and bone strain of terrestrial locomotion. Journal of Experimental Biology 208, 9931009.CrossRefGoogle ScholarPubMed
Rolfe, W. D. I., Clarkson, E. N. K & Panchen, A. L. (eds) 1994. Volcanism and early terrestrial biota. Transactions of the Royal Society of Edinburgh: Earth Sciences, vol. 84, Edinburgh: The Royal Society of Edinburgh. 467 pp.Google Scholar
Romer, A. S. 1957. The appendicular skeleton of the Permian embolomerous amphibian Archeria. Contributions from the Museum of Palaeontology, University of Michigan 13, 103–59.Google Scholar
Ronquist, F. & Huelsenbeck, J. P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–74.CrossRefGoogle ScholarPubMed
Ruta, M., Milner, A. R. & Coates, M. I. 2001. The tetrapod Caerorhachis bairdi Homes and Carroll from the Lower Carboniferous of Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 92, 229–61.CrossRefGoogle Scholar
Ruta, M., Coates, M. I. & Quicke, D. L. J. 2003. Early tetrapod relationships revisited. Biological Reviews 78, 251345.CrossRefGoogle ScholarPubMed
Ruta, M., Krieger, J., Angielczyk, K. A. & Wills, M. A. 2019. The evolution of the tetrapod humerus: Morphometrics, disparity, and evolutionary rates. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 109, 351–69.CrossRefGoogle Scholar
Ruta, M. & Bolt, J. R. 2006. A reassessment of the temnospondyl amphibian Perryella olsoni from the Lower Permian of Oklahoma. Transactions of the Royal Society of Edinburgh: Earth Sciences 97, 113–65.CrossRefGoogle Scholar
Ruta, M. & Clack, J. A. 2006. A review of Silvanerpeton miripedes, a stem amniote from the Lower Carboniferous of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 97, 3163.CrossRefGoogle Scholar
Ruta, M. & Coates, M. I. 2007. Dates, nodes and character conflict: Addressing the lissamphibian origin problem. Journal of Systematic Palaeontology 5, 69122.CrossRefGoogle Scholar
Säve-Söderbergh, G. 1934. Some points of view concerning the evolution of the vertebrates and the classification of this group. Arkiv för Zoologi 26A, 120.Google Scholar
Schoch, R. R. 2013. The evolution of major temnospondyl clades: an inclusive phylogenetic analysis. Journal of Systematic Palaeontology 11, 673705.CrossRefGoogle Scholar
Schoch, R. R., Voigt, S. & Buchwitz, M. 2010. A chroniosuchid from the Triassic of Kyrgyzstan and analysis of chroniosuchian relationships. Zoological Journal of the Linnean Society 160, 515–30.CrossRefGoogle Scholar
Schoch, R. R. & Milner, A. R. 2014. Handbook of paleoherpetology, part 3A2: Temnospondyli I. München: Verlag Dr. Friedrich Pfeil. 150 pp.Google Scholar
Smithson, T. R. 1985. The morphology and relationships of the Carboniferous amphibian Eoherpeton watsoni Panchen. Zoological Journal of the Linnean Society 85, 317410.CrossRefGoogle Scholar
Smithson, T. R. 1989. The earliest known reptile. Nature 342, 676–78.CrossRefGoogle Scholar
Smithson, T. R. 1994. Eldeceeon rolfei, a new reptiliomorph from the Viséan of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 377–82.CrossRefGoogle Scholar
Smithson, T. R., Carroll, R. L., Panchen, A. L. & Andrews, S. M. 1994. Westlothiana lizziae from the Viséan of East Kirkton, West Lothian, Scotland, and the amniote stem. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 383412.CrossRefGoogle Scholar
Smithson, T. R. & Clack, J. A. 2018. A new tetrapod from Romer's Gap reveals an early adaptation for walking. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108, 8997.CrossRefGoogle Scholar
Smithson, T. R. & Rolfe, W. D. I. 1990. Westlothiana gen. nov.: naming the earliest known reptile. Scottish Journal of Geology 26, 137–38.CrossRefGoogle Scholar
Sues, H.-D. 2019. Authorship and date of publication of the name Tetrapoda. Journal of Vertebrate Paleontology 39, e1564758.CrossRefGoogle Scholar
Swofford, D. L. 1998. PAUP* Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
White, T. E. 1939. Osteology of Seymouria baylorensis Broili. Bulletin of the Museum of Comparative Zoology 85, 325409.Google Scholar
Wilkinson, M. 1996. Majority-rule reduced consensus trees and their use in bootstrapping. Molecular Biology and Evolution 13, 437–44.CrossRefGoogle ScholarPubMed
Witzmann, F. & Schoch, R. R. 2018. Skull and postcranium of the bystrowianid Bystrowiella schumanni from the Middle Triassic of Germany, and the position of chroniosuchians within Tetrapoda. Journal of Systematic Palaeontology 16, 711–39.CrossRefGoogle Scholar
Supplementary material: File

Ruta et al. supplementary material

Ruta et al. supplementary material

Download Ruta et al. supplementary material(File)
File 1.7 MB