Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T11:36:08.251Z Has data issue: false hasContentIssue false

XX.—The Geochemistry of some Caledonian Plutonic Rocks: A Study in the Relationship between the Major and Trace Elements of Igneous Rocks and their Minerals

Published online by Cambridge University Press:  06 July 2012

S. R. Nockolds
Affiliation:
Department of Mineralogy and Petrology, University of Cambridge
R. L. Mitchell
Affiliation:
Macaulay Institute for Soil Research, Aberdeen

Extract

The Caledonian plutonic rocks of Western Scotland form a well-defined group, ranging from ultrabasic to acid types, which have been studied in detail by a number of petrologists. They form intrusions of varying size, usually composite and frequently, at least, having the habit of ring complexes. The rock types include peridotites and pyroxenites, gabbros, hornblendite and appinite, appinitic diorites, pyroxene-mica diorites, hornblende-biotite diorite, various hornblende-biotite grandiorites, biotite adamellite and muscovite-biotite adamellite, while the final stage is represented by numerous veins of aplite and rare pegmatites.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1947

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Anderson, J. G. C., 1935 (i). “The Marginal Intrusions of Ben Nevis,” Trans. Geol. Soc. Glasgow, XIX, 225.CrossRefGoogle Scholar
Anderson, J. G. C., 1935 (ii). “The Arrochar Intrusive Complex,” Geol. Mag., LXXII, 263.CrossRefGoogle Scholar
Anderson, J. G. C., 1937. “The Etive Granite Complex,” Q.J.G.S., XCIII, 487.CrossRefGoogle Scholar
Bailey, E. B., and Maufe, H. B., 1916. “The Geology of Ben Nevis and Glen Coe,” Mem. Geol. Surv. Scotland.Google Scholar
Bowen, N. L., 1913. “The Melting Phenomena of the Plagioclase Felspars,” Amer. Jown. Sci., (4), XXXV, 577.CrossRefGoogle Scholar
Bowen, N. L., 1928. The Evolution of the Igneous Rocks. Princeton.Google Scholar
Brammall, A., and Harwood, H. F., 1932. “The Dartmoor Granites: their Genetic Relationships,” Q.J.G.S., LXXXVIII, 171.CrossRefGoogle Scholar
Bray, J. M., 1942 (i). “Distribution of Minor Chemical Elements in Tertiary Dike Rocks of the Front Range, Colorado,” Amer. Min., XXVII, 425.Google Scholar
Bray, J. M., 1942 (ii). “Spectroscopic Distribution of Minor Elements in Igneous Rocks from Jamestown, Colorado,” Bull. Geol. Soc. America, LIII, 765.CrossRefGoogle Scholar
Chapman, R. W., and Williams, C. R., 1935. “Evolution of the White Mountain Magma Series,” Amer. Min., XX, 502.Google Scholar
Clarke, F. W., 1886. “Researches on the Lithia Micas,” Amer. J own. Sci., (3), XXXII, 353.CrossRefGoogle Scholar
Deer, W. A., 1935. “The Cairnsmore of Carsphairn Igneous Complex,” Q.J.G.S., XCI, 47.CrossRefGoogle Scholar
Deer, W. A., 1937 (i). “The Composition and Paragenesis of the Biotites of the Carsphairn Igneous Complex,” Min. Mag., XXIV, 495.Google Scholar
Deer, W. A., 1937 (ii). “Note on a Pegmatitic Hornblende from the Carsphairn Complex,” Geol. Mag., LXXIV, 359.CrossRefGoogle Scholar
Deer, W. A., 1938. “The Composition and Paragenesis of the Hornblendes of the Glen Tilt Complex, Perthshire,” Min. Mag., XXV, 56.Google Scholar
Deer, W. A., and Wager, L. R., 1938. “Two new Pyroxenes included in the System Clinoenstatite, Clinoferrosilite, Diopside, and Hedenbergite,” Min. Mag., XXV, 15.Google Scholar
Edwards, A. B., 1942. “Differentiation of the Dolerites of Tasmania, II,” Journ. Geol., L, 579.CrossRefGoogle Scholar
Engelhardt, W. Von., 1936. “Die Geochemie des Barium,” Chemie der Erde, X, 187.Google Scholar
Evans, R. C., 1939. An Introduction to Crystal Chemistry. Cambridge.Google Scholar
Ferguson, J. B., 1914. “Molybdenum in Rocks,” Amer. Journ. Sci., (4), XXXVII, 399.CrossRefGoogle Scholar
Finley, F. L., 1930. “The Nepheline Syenites and Pegmatites of Mount Royal, Montreal, Que.,” Canadian Journ. Research, II, 231.CrossRefGoogle Scholar
Freudenberg, W., 1921. “Titanbiotit (Wodanit) vom Katzenbuckel,” Mitt. d. Bad. geol. Landesanst, VIII, 319.Google Scholar
Goldschmidt, V. M., 1923. “Geochemische Verteilungsgesetze der Elemente, I,” Vidensk. Skrift. I. Math-Not. Kl., Kristiania, No. 3.Google Scholar
Goldschmidt, V. M., 1934. “Drei Vorträge über Geochemie,” Geol. Foren. Stockholm Förhandl., LVI, 385.CrossRefGoogle Scholar
Goldschmidt, V. M., 1944. “Crystal Chemistry and Geochemistry,” Chemical Products, March-April, I.Google Scholar
Goldschmidt, V. M., and Thomassen, L., 1924. “Geochemische Verteilungsgesetze der Elemente, III,” Vidensk. Skrift. I. Math-Nat. Kl. Kristiania, No. 5.Google Scholar
Goldschmidt, V. M., and Peters, Cl., 1931 (i). “Zur Geochemie des Galliums,” Nach d. Gesell. d. Wiss., Göttingen, Math. Phys. Kl., fachgruppe 4, I, 165.Google Scholar
Goldschmidt, V. M., 1931 (ii). “Zur Geochemie des Scandiums,” Nach. d. Gesell. d. Wiss., Göttingen, Math. Phys. Kl., fachgruppe 4, I, 257.Google Scholar
Goldschmidt, V. M., 1932. “Zur Geochemie des Bors, I,” Nach. d. Gesell. d. Wiss., Göttingen, Math. Phys. Kl., fachgruppe 4, II, 402.Google Scholar
Goldschmidt, V. M., Bauer, H., and Witte, H., 1934. “Zur Geochemie der Alkalimetalle, II,” Nach. d. Gesell. d. Wiss., Göttingen Mhat. Phys. Kl., fachgruppe 4, n.s., I, 39.Google Scholar
Harcourt, G. A., 1934. “The Minor Chemical Constituents of Some Igneous Rocks,” Journ. Geol., XLII, 585.CrossRefGoogle Scholar
Harris, J. W., 1928. “The Intrusive Igneous Rocks of the Dundee District,” Trans. Edinburgh Geol. Soc, XII, 54.Google Scholar
Henry, N. F. M., 1935. “Some data on the Iron-rich Hypersthenes,” Min. Mag., XXIV, 221.Google Scholar
Hevesy, G. Von., 1932. “Die geochemische und Kosmische Häufigkeit des Bleis,” Forts, der Min., etc., XVI, 147.Google Scholar
Hillebrand, W. T., 1898. “Distribution and Quantitative Occurrence of Vanadium and Molybdenum in Rocks of the United States,” Amer. Journ. Sci., (4) VI, 209.CrossRefGoogle Scholar
Holgate, N., 1943. “The PoTtencorkie Complex of Wigtownshire,” Geol. Mag., LXXX, 171.CrossRefGoogle Scholar
Jakob, J., 1931. “Beiträge zur chemischen Konstitution der Glimmer, IX,” Zeit. Kryst., LXXIX, 367.Google Scholar
King, B. C., 1937. “The Minor Intrusions of Kirkcudbrightshire,” Proc. Geol. Assoc., XLVIII, 282.CrossRefGoogle Scholar
Kunitz, W., 1924. “Die Beziehungen zwischen der chemischen Zusammensetzung und den physikalisch-optischen Eigenschaften innerhalb der Glimmergruppe,” Neues Jahr. f. Min. etc., L. 365.Google Scholar
Larsen, E. S., Irving, J., Gonyer, F. A., and Larsen, E. S., 3rd, 1937. “Petrologie Results of a Study of the Minerals from the Tertiary Volcanic Rocks of the San Juan Region, Colorado,” Amer. Min., XXII, 889.Google Scholar
Lundegårdh, P. H., 1945. “Distribution of Vanadium, Chromium, Cobalt and Nickel in Eruptive Rocks,” Nature, CLV, 753.CrossRefGoogle Scholar
Macgregor, A. G., and Kennedy, W. Q., 1932. “The Morven-Strontian ‘Granite’,” Summ. Prog. Geol. Surv. for 1931, part 2, 105.Google Scholar
Macgregor, M., 1937. “The Western Part of the Criffell-Dalbeattie Igneous Complex,” Q.J.G.S., XCIII, 457.CrossRefGoogle Scholar
Miropolsky, L. M., and Borovice, S. A., 1944. “The Results of Spectrum Analysis of Silicon Minerals from the Permian Deposits of Tartaria,” Compt. Rend. (Doklady) Acad. Sci., URSS (new series), XLV, 334.Google Scholar
Mitchell, R. L., 1940. “The Spectrographic Determination of Trace Elements in Soils.—I. The Cathode Layer Arc,” Journ. Soc. Chem. Industry, LIX, 210.Google Scholar
Morgan, J. H., and Auer, M. L., 1941. “Optical, Spectrographic and Radioactivity Studies of Zircon,” Amer. Journ. Sci., CCXXXIX, 305.CrossRefGoogle Scholar
Nockolds, S. R., 1941. “The Garabal Hill-Glen Fyne Igneous Complex,” Q.J.G.S., XCVI, 451.Google Scholar
Nockolds, S. R., 1946. “The Order of Crystallization of the Minerals in some Caledonian Plutonic and Hypabyssal Rocks,” Geol. Mag., LXXXIII, 206.CrossRefGoogle Scholar
Nockolds, S. R., 1947. “The Granitic Cotectic Curve,” Geol. Mag., LXXXIV, 19.CrossRefGoogle Scholar
Noll, W., 1934. “Geochemie des Strontiums,” Chemie der Erde, VIII, 506.Google Scholar
Oftedal, I., 1939 (i). “On the Occurrence of Tin in Norwegian Minerals,” Norsk. Geol. Tidsskrift, XIX, 314.Google Scholar
Oftedal, I., 1939 (ii). “Vanadium in dem apatitvorkommen von Ødegården im Bamble,” Norsk Geol. Tidsskrift, XIX, 340.Google Scholar
Oftedal, I., 1943. “Scandium in Biotite as a Geologic Thermometer,” Norsk. Geol. Tidsskrift, XXIII, 202.Google Scholar
Phemister, J., and Macgregor, A. G., 1942. “Note on Datolite and Other Minerals in a Contact-altered Limestone at Chapel Quarry, near Kirkcaldy, Fife,” Min. Mag., XXVI, 275.Google Scholar
Ramdohr, P., 1936. “Ein Zinnvorkommen im Marmor bei Arandis, Deutsch-Südwestafrika,” Neues Jahr. f. Min. etc., LXX, Abt. A., 1.Google Scholar
Sandell, E. B., and Goldich, S. S., 1943. “The Rarer Metallic Constituents of Some American Igneous Rocks, II,” Journ. Geol., LI, 167.CrossRefGoogle Scholar
Schröder, Fr., 1932. “Spectrographische Untersuchungen an Gesteinen und Minerahen des Katzenbuckels im Odenwald,” Neues Jahr. f. Min. etc., LXIII, Abt. A., 215.Google Scholar
Spencer, E., 1937. “The Potash-Soda-Felspars.—I. Thermal Stability,” Min. Mag., XXIV, 453.Google Scholar
Strock, L. W., 1936. “Zur Geochemie des Lithiums,” Nach. d. Gesell. d. Wiss., Göttingen, Math. Phys. Kl., fachgruppe 4, n.s., I, 171.Google Scholar
Taylor, W. H., 1933. “The Structure of Sanidine and Other Felspars,” Zeits. Kryst., LXXXV, 425.Google Scholar
Taylor, W. H., Darbyshire, J. A., and Strunz, H., 1934. “An X-ray Investigation of the Felspars,” Zeits. Kryst., LXXXVII, 464.Google Scholar
Vogt, J. H. L., 1923. “Nickel in Igneous Rocks,” Econ. Geol., XVIII, 307.CrossRefGoogle Scholar
Volk, G. W., 1939. “Optical and Chemical Studies of Muscovite,” Amer. Min., XXIV, 255.Google Scholar
Volkova, M. L., and Melentiev, B. N., 1939. “Chemical Composition of the Khibiny Apatites,” Compt. Rend. (Doklady) Acad. Sci., URSS, XXV, 120.Google Scholar
Wager, L. R., and Deer, W. A., 1939. “Geological Investigations in East Greenland, Part III. The Petrology of the Skaergaard Intrusion, Kangerdlugssuaq, East Greenland,” Medd. om Grønland, CV, No. 4.Google Scholar
Wager, L. R., and Mitchell, R. L., 1943. “Preliminary Observations on the Distribution of Trace Elements in the Rocks of the Skaergaard Intrusion, Greenland,” Min. Mag., XXVI, 283.Google Scholar
Wager, L. R., 1945. “Distribution of Vanadium, Chromium, Cobalt and Nickel in Eruptive Rocks,” Nature, CLVI, 207.CrossRefGoogle Scholar
Walker, F. W., 1927. “The Igneous Geology of Ardsheal Hill, Argyllshire,” Trans. Roy. Soc. Edin., LV, 147.CrossRefGoogle Scholar
Warren, B. E., 1930. “The Crystal Structure and Chemical Composition of the Monoclinic Amphiboles,” Zeits. Kryst., LXXII, 493Google Scholar
Williamson, W. O., 1935. “The Composite Gneiss and Contaminated Granodiorite of Glen Shee, Perthshire,” Q.J.G.S., XCI, 382.CrossRefGoogle Scholar
Zachariasen, W. H., 1930. “The Crystal Structure of Titanite,” Zeits. Kryst., LXXIII, 7.Google Scholar