Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-20T21:33:01.417Z Has data issue: false hasContentIssue false

Fossil plants from the Viséan of East Kirkton, West Lothian, Scotland

Published online by Cambridge University Press:  03 November 2011

A. C. Scott
Affiliation:
Departments of Geology, Royal Holloway University of London, Egham, Surrey, TW20 0EX, U.K.
R. Brown
Affiliation:
Departments of Geology, Royal Holloway University of London, Egham, Surrey, TW20 0EX, U.K. Biology, Royal Holloway University of London, Egham, Surrey, TW20 0EX, U.K. Laboratoire de Paléobotanique, Université de Montpellier II, 34095, Montpellier, Cedex 5, France
J. Galtier
Affiliation:
Laboratoire de Paléobotanique, Université de Montpellier II, 34095, Montpellier, Cedex 5, France
B. Meyer-Berthaud
Affiliation:
Laboratoire de Paléobotanique, Université de Montpellier II, 34095, Montpellier, Cedex 5, France

Abstract

Plant fossils are a common and important element in the East Kirkton biota of Brigantian (late Viséan age). The most important taxa are preserved as compressions or anatomically preserved as permineralisations. The basis of the quantitative study of the flora and the distribution of individual plant species was the trenched section excavated for the East Kirkton Project. The largest diversity of compressions have been recorded from loose blocks. In the trenched section, the uppermost ashes contain only lycopsid compressions including Stigmaria. Nodules in the underlying shales yield mainly lycopsid leaf and sporophyll compressions. The uppermost limestones (Units 39-52) contain drifted fragments of pteridosperm fronds mainly Sphenopteridium crassum, S. pachyrrhachis, Spathulopteris obovata and Adiantites antiquus. Permineralised Lyginorachis spp. occur at this level. Large permineralised woody gymnosperm axes have been found loose (including Pitus, 50 cm in diameter). Permineralised axes, mainly reworked, including the gymnosperms Bilignea, Eristophyton, Stanwoodia and possibly Protopitys, have been found in Units 72-88. Poorly preserved permineralised lycopsids are rare, but include Lepidophloios. Loose chert blocks contain root mats of permineralised Stigmaria, together with Lepidocarpon, the sphenopsid Archaeocalamites and the fern Botryopteris. Similar material is found in Unit 83 of the Limestone sequence. Unit 82, the black shale containing many of the articulated vertebrates, contains predominantly pteridosperm frond and pinnule material including Spathulopteris obovata. The distinctive changes in the flora from the base to the top of the trenched sequence reflect mainly ecological and taphonomic controls upon plant distribution and preservation. Evidence suggests a close relationship between climate, fire, erosion, deposition and vegetation type through the sequence and a climatic change, from a drier to a wetter environment, is suggested at the top of the East Kirkton Limestone sequence.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bateman, R. M. 1991a. Palaeoecology, 34116, In Cleal, C. J. (Ed) Plant fossils in geological investigation: the Palaeozoic. Chichester: Ellis Horwood.Google Scholar
Bateman, R. M. 1991b. Palaeobiological and phylogenetic implications of an anatomically-preserved Archaeocalamites from the Dinantian of Oxroad Bay and Loch Humphrey Burn, Scotland. Palaeontographica B, 223, 159.Google Scholar
Bateman, R. M. & Rothwell, G. 1990. A reappraisal of the Dinantian floras at Oxroad Bay, East Lothian, Scotland. 1. Floristics and the development of whole plant concepts. TRANS R SOC EDINBURGH: EARTH SCI. 81, 161194.CrossRefGoogle Scholar
Bateman, R. & Scott, A. C. 1990. A reappraisal of the Dinantian floras at Oxroad Bay, East Lothian, Scotland. 2. Palaeoenvironments and palaeoecology. TRANS R SOC EDINBURGH: EARTH SCI. 81, 161–94.CrossRefGoogle Scholar
Bateman, R. M., DiMichele, W. A. & Willard, D. A. 1992. Experimental cladistic analysis of anatomically preserved aborescent lycopsids from the Carboniferous of Euramerica: an essay on Paleobotanical phylogenetics. ANN MISSOURI BOT GARD 79, 500–59.CrossRefGoogle Scholar
Brack-Hanes, S. D. & Thomas, B. A. 1983. A re-examination of Lepidostrobus Brongniart. BOT J LINN SOC 86, 125–33.CrossRefGoogle Scholar
Brown, R. & Meyer-Berthand, B. 1993. Permineralized frond remains of gymnosperms from the Dinantian of East Kirkton, Scotland. SPEC PAP PALAENTOL 49, 4356.Google Scholar
Brown, R., Scott, A. C. & Jones, T. P. 1994. Taphonomy of the plants from the Viséan of East Kirkton, West Lothian, Scotland. TRANS. R SOC. EDINBURGH: EARTH SCI 84, 267274.Google Scholar
Chisholm, J. I., McAdam, A. D. & Brand, P. J. 1989. Lithostratigraphical classification of Upper Devonian and Lower Carboniferous rocks in the Lothians. BR GEOL SURV TECH REP WA/89/26.Google Scholar
Cleal, C. J. 1991. Carboniferous and Permian Biostratigraphy, 182215. In Cleal, C. J. (Ed) Plant fossils in geological investigation: the palaeozoic. Chichester: Ellis Horwood.Google Scholar
Crookall, R. 1932. The stratigraphical distribution of British Lower Carboniferous plants. In Summary of Progress of the Geological Survey for 1931, part 11, 70104.Google Scholar
Cunningham, J. H. 1838. On the Geology of the Lothians. MEM WERNERIAN NAT HIST SOC. VII, 461 pp.Google Scholar
Galtier, J. 1967. Les sporanges de Botryopteris antiqua Kidston. C R HEBD SÉANC ACAD SCI PARIS D264, 897900.Google Scholar
Galtier, J. 1970. Recherches sur les Végétaux à structure conservée du Carbonifére inférieur franços. PALÉOBIOL CONTINENT 1, 4, 1221.Google Scholar
Galtier, J. 1986. Comparing compression and peremineralized taxa. In Spicer, R. A. & Thomas, B. (Eds) Systematic and taxonomic approaches in palaeobotany 16. SYST ASSOC SPEC PUBL 31.Google Scholar
Galtier, J. & Scott, A. C. 1990. On Eristophyton and other gymnosperms from the Lower Carboniferous of Castleton Bay, East Lothian, Scotland. GEOBIOS 23, 519.CrossRefGoogle Scholar
Galtier, J. & Scott, A. C. 1991. Stanwoodia: a new genus of probable early gymnosperms from the Dinantian of East Kirkton. TRANS R SOC EDINBURGH: EARTH SCI 82, 113–23.CrossRefGoogle Scholar
Galtier, J. & Scott, A. C. 1994. Arborescent gymnosperms from the Viséan of East Kirkton, West Lothian, Scotland. TRANS R SOC EDINBURGH: EARTH SCI. 84, 261266.Google Scholar
Galtier, J., Brown, R. E., Scott, A. C., Rex, G. M. & Rowe, N. P. 1993. A late Dinantian flora from Weaklaw, East Lothian, Scotland. SPEC PAP PALAENTOL 49, 5774.Google Scholar
Gensel, P. 1985. On Neuropteris Brongniart and Cardiopteridium Nathorst from the Early Carboniferous Price Formation, Southwestern Viginia, U.S.A. REV PALAEOBOT PALYNOL 54, 105–19.CrossRefGoogle Scholar
Hibbert, S. 1836. On the freshwater limestone at Burdiehouse. TRANS R SOC EDINBURGH. 13, 169282.CrossRefGoogle Scholar
Holden, H. S. 1962. The morphology of Botryopteris antiqua. BULL BR MUS NAT HIST GEOL 5, 361–80.Google Scholar
Jones, T. P., Scott, A. C. & Mattey, D. P. 1993. Investigations of ‘Fusain transition fossils’ from the Lower Carboniferous: comparisons with modern partially charred wood. INT J COAL GEOL 22, 3759.CrossRefGoogle Scholar
Josten, K.-H. 1985. Fossile pflanzen im Namur des Ruhrkohlenbeckens. C R XIEME CONG STRAT GEOL CARBONIF MADRID 1, 55–8.Google Scholar
Kidston, R. 1923-1925. Fossil plants of the Carboniferous rocks of Great Britain. Parts 1-6. MEM GEOL SURV GR BRIT 2, 1670.Google Scholar
Lacey, W. S. 1962. Welsh Lower Carboniferous plants. 1. The flora of the Lower Brown Limestone in the vale of Clwyd, North Wales. PALAEONTOGRAPHICA 111B, 126–61.Google Scholar
LaMarche, V. C. Jr & Hirschboeck, K. K. 1984. Frost rings in trees as records of major volcanic eruptions. NATURE 307, 121–6.CrossRefGoogle Scholar
Lindley, J. & Hutton, W. 1831-1837. The fossil flora of Great Britain, i–iii. London: J. Ridgeway and Sons.Google Scholar
Long, A. G. 1979. Observations on the Lower Carboniferous genus Pitus Witham. TRANS R SOC EDINBURGH 70, 111–27.Google Scholar
Long, A. G. 1987. Observations on Eristophyton Zalessky, Lyginorachis waltonii Calder and Cladoxylon edromense sp. nov. from the Lower Carboniferous Cementstone Group of Scotland. TRANS R SOC EDINBURGH 78, 7384.CrossRefGoogle Scholar
Meyer-Berthaud, B. 1990. Studies on a new Lower Carboniferous flora from Kingswood near Pettycur, Scotland. III. Lyginorachis. REV PALAEOBOT PALYNOL 63, 7790.CrossRefGoogle Scholar
Phillips, T. L. & DiMichele, W. A. 1992. Comparative ecology and life-history biology of arborescent lycopsids in Late Carboniferous swamps of Euramerica. ANN MISSOURI BOT GARD 79, 560–88.CrossRefGoogle Scholar
Raymond, A. 1985. Floral diversity, phytogeography, and climatic amelioration during the early Carboniferous (Dinantian). PALEOBIOLOGY 11, 293309.CrossRefGoogle Scholar
Raymond, A., Parker, W. C. & Parrish, J. T. 1985. Phytogeography and paleoclimate of the early Carboniferous. In: Tiffney, B. (Ed.) Geological factors and the evolution of plants. 169222. Yale: Yale University Press.Google Scholar
Read, C. B. & Mamay, S. H. 1964. Upper Paleozoic floral zones and floral provinces in the United States. US GEOL SURV PROF PAP 454K, 135.Google Scholar
Rex, G. M. & Scott, A. C. 1987. The sedimentology, palaeoecology and preservation of the Lower Carboniferous plant deposits at Pettycur, Fife, Scotland. GEOL MAG 124, 4366.CrossRefGoogle Scholar
Rolfe, W. D. I., Durant, G. P., Fallick, A. E., Hall, A. J., Large, D. J., Scott, A. C., Smithson, T. R. & Walkden, G. M. 1990. An early terrestrial biota preserved by Viséan vulcanicity in Scotland. In Lockley, M. G. & Rice, A. (Eds) Volcanism and fossil biotas. GEOL SOC AM SPEC PAP 244, 1324.Google Scholar
Rolfe, W. D. I., Durant, G. P., Baird, W. J., Chaplin, C., Paton, R. L. & Reekie, R. J. 1994. The East Kirkton Limestone, Viséan Carboniferous, West Lothian, Scotland. Introduction and stratigraphy. TRANS R SOC EDINBURGH: EARTH SCI 84, 177188.Google Scholar
Rowe, N. P. 1988a. New observations on the Lower Carboniferous pteridosperm Diplopteridium Walton and an associated synangiate organ. BOT J LINN SOC 97, 125–58.CrossRefGoogle Scholar
Rowe, N. P. 1988b. Two species of the Lycophyte genus Eskdalia Kidston from the Drybrook Sandstone (Viséan) of Great Britain. PALAEONTOGRAPHICA B 208, 81103.Google Scholar
Rowe, N. P. 1992. The gymnosperm Archaeopteridium Tschermakii and an associated glandular fructification from the Upper Viséan Drybrook sandstone of Great Britain. PALAEONTOLOGY 35, 875900.Google Scholar
Scott, A. C. 1985. The distribution of Lower Carboniferous floras in northern Britain. C R 9e CONGR INT STRAT GÉOL CARBONIF URBANA 1979 5, 3539.Google Scholar
Scott, A. C. 1989. Observations on the nature and origin of fusain. INT J COAL GEOL 12, 443–75.CrossRefGoogle Scholar
Scott, A. C. 1990. Preservation, evolution and extinction of plants in Lower Carboniferous volcanic sequences in Scotland. In Lockley, M. (Ed.) Volcanism and fossil biotas: implications for preservation, evolution and extinction. GEOL SOC AM SPEC PUBL 244, 2538.Google Scholar
Scott, A. C. & Galtier, J. 1988. A new Lower Carboniferous flora from East Lothian, Scotland. PROC GEOL ASS LONDON 99, 141–51.CrossRefGoogle Scholar
Scott, A. C. & Jones, T. P. in press. The nature and influence of fire in Carboniferous ecosystems. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOLGoogle Scholar
Scott, A. C. & Meyer-Berthaud, B. 1985. Plants from the Dinantian of Foulden, Berwickshire, Scotland. TRANS R SOC EDINBURGH: EARTH SCI 76, 1320.CrossRefGoogle Scholar
Scott, A. C., Galtier, J. & Clayton, G. 1984. Distribution of anatomically-preserved floras in the Lower Carboniferous in Western Europe. TRANS R SOC EDINBURGH: EARTH SCI 75, 311–40.CrossRefGoogle Scholar
Scott, A. C., Meyer-Berthaud, B., Galtier, J., Rex, G. M., Brindley, S. A. & Clayton, G. 1986. Studies on a new Lower Carboniferous flora from Kingswood near Pettycur, Scotland, 1. Preliminary report. REV PALAEOBOT PALYNOL 48, 161–80.CrossRefGoogle Scholar
Skog, J. E. & Gensel, P. G. 1980. A fertile species of Triphyllopteris from the Early Carboniferous (Mississippian) of Southwestern Virginia. AM J BOT 67, 440–51.CrossRefGoogle Scholar
Smith, R. A., Stephenson, D. & Monro, S. K. 1994. The geological setting of the southern Bathgage Hills West Lothian, Scotland. TRANS R SOC EDINBURGH: EARTH SCI 84, 189196.Google Scholar
Wagner, R. H. 1984. Megafloral zones of the Carboniferous. C R 9e CONGR INT STRAT GÉOL CARBONIF URBANA 1979 2, 109–34.Google Scholar
Walton, J. 1931. Contributions to the knowledge of Lower Carboniferous plants. III. On the fossil flora of the Black Limestones in Teilia Quarry, Gwaenysgor, near Prestatyn, Flintshire, with special reference to Diplopteridium teilianum Kidston sp. (gen. nov.) and some other fernlike fronds. PHILOS TRANS ROY SOC LONDON 219B. 347379.Google Scholar
Walton, J., Weir, J. & Leitch, D. 1938. A summary of Scottish Carboniferous stratigraphy and Palaeontology. CR ADV ETUD STRAT CARBONIF HEERLEN 1935 1343–56.Google Scholar
Witham, H. T. M. 1830. Vegetation of the first period of an ancient world. PHIL MAG 7, 2331.CrossRefGoogle Scholar
Witham, H. T. M. 1831. Observations on fossil vegetables accompanied by representations of their internal structure as seen through the microscope. Edinburgh: W. Blackwood, 48pp.Google Scholar
Witham, H. T. M. 1833. The internal structure of fossil vegetables found in the Carboniferous and oolitic deposits of Great Britain, described and illustrated. Edinburgh: A. & C. Black, 84 pp.Google Scholar
Van der Zwan, C. J. 1981. Palynology, Phytogeography and climate of the Lower Carboniferous. PALAEOGEOGR PALEOCLIMATOL PALAEOECOL 33, 279310.CrossRefGoogle Scholar
Van der Zwan, C. J., Boulter, M. & Hubbard, R. 1985. Climatic change during the Lower Carboniferous in Euramerica, based on multivariate statistical analysis of palynological data. PALAEOCLIMATOL PALAEOGEOGR PALAEOECOL 52, 120.CrossRefGoogle Scholar