Published online by Cambridge University Press: 18 October 2010
Comparisons of estimators are made on the basis of their mean squared errors and their concentrations of probability computed by means of asymptotic expansions of their distributions when the disturbance variance tends to zero and alternatively when the sample size increases indefinitely. The estimators include k-class estimators (limited information maximum likelihood, two-stage least squares, and ordinary least squares) and linear combinations of them as well as modifications of the limited information maximum likelihood estimator and several Bayes' estimators. Many inequalities between the asymptotic mean squared errors and concentrations of probability are given. Among medianunbiasedestimators, the limited information maximum likelihood estimator dominates the median-unbiased fixed k-class estimator.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.