Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-21T10:27:24.716Z Has data issue: false hasContentIssue false

Multivariate Time Series: A Polynomial Error Correction Representation Theorem

Published online by Cambridge University Press:  11 February 2009

Stéphane Gregoir
Affiliation:
Institut National de la Statistique et des Etudes Economiques
Guy Laroque
Affiliation:
Institut National de la Statistique et des Etudes Economiques

Abstract

We consider a class of multivariate processes which, when differenced enough, yield covariance stationary processes whose determinants of the Wold representation have I as their only root on the unit circle. A representation theorem is proved for this class of processes that generalizes the Granger representation theorem.

Type
Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cartan, H.Théorie Élémentaire des Fonctions Analytiques. Paris: Hermann, 1961.Google Scholar
2.Dieudonné, J.Eléments d'Analyse I: Fondements de l'Analyse Moderne. Paris: Gauthier-Villars, 1969.Google Scholar
3.Engle, R.F. & Granger, C.W.J.. Co-integration and error correction: Representation, estimation and testing. Econometrica 55 (1987): 251276.CrossRefGoogle Scholar
Engle, R.F. & Yoo, B.S.. Cointegrated economic time series: A survey with new results. In Engle, R.F. & Granger, C.W.J. (eds.), Long-Run Economic Relationships: Readings in Cointegration. Oxford: Oxford University Press, 1991.CrossRefGoogle Scholar
5.Granger, C.W.J.Some properties of time series data and their use in econometric model specification. Journal of Econometrics (1981): 121130.CrossRefGoogle Scholar
6.Granger, C.W.J. & Lee, T.H.. Investigation of production, sales and inventory relationships using multicointegration and non-symmetric error correction models. Journal of Applied Econometrics 4 (1989): 145159.CrossRefGoogle Scholar
Granger, C.W.J. & Lee, T.H.. Multicointegration. In Rhodes, G.F. Jr. & Fomby, T.B. (eds.), Advances in Econometrics: Cointegration, Spurious Regressions and Unit Roots. Greenwich, CT: JAI Press, 1989.Google Scholar
Granger, C.W.J. & Weiss, A.A.. Time series analysis of error correcting models. In Karlin, S., Amemiya, T., & Goodman, L.A. (eds.), Studies in Economic Time Series and Multivariate Statistics. New York: Academic Press, 1983.Google Scholar
Hendry, D.F. & Ungern-Sternberg, T. Von. Liquidity and inflation effects on consumer's expenditure. In Deaton, A.S. (ed.), Essays in the Theory and Measurement of Consumer's Behavior. Cambridge: Cambridge University Press, 1981.Google Scholar
10.Johansen, S.The mathematical structure of error correction models. Contemporary Mathematics 80 (1988): 359386.CrossRefGoogle Scholar
11.Johansen, S.A representation of vector autoregressive processes integrated of order 2. Econometric Theory (to appear).Google Scholar
12.Phillips, P.C.B. & Solo, V.. Asymptotics for linear processes. Annals of Statistics 20 (1992): 9711001.CrossRefGoogle Scholar
13.Sims, C.A.Money, income and causality. American Economic Review 62 (1972): 540552.Google Scholar
14.Sims, C.A.Macroeconomics and reality. Econometrica 48 (1980): 148.CrossRefGoogle Scholar