Published online by Cambridge University Press: 11 February 2009
This paper takes up Bayesian inference in a general trend stationary model for macroeconomic time series with independent Student-t disturbances. The model is linear in the data, but nonlinear in parameters. An informative but nonconjugate family of prior distributions for the parameters is introduced, indexed by a single parameter that can be readily elicited. The main technical contribution is the construction of posterior moments, densities, and odd ratios by using a six-step Gibbs sampler. Mappings from the index parameter of the family of prior distribution to posterior moments, densities, and odds ratios are developed for several of the Nelson–Plosser time series. These mappings show that the posterior distribution is not even approximately Gaussian, and they indicate the sensitivity of the posterior odds ratio in favor of difference stationarity to the choice of the prior distribution.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.